Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Liquiritigenin (LQ), an aglycone of liquiritin in licorice, has demonstrated antioxidant, anti-inflammatory and anti-tumor activities. Previously, LQ was found to inhibit liver fibrosis progression.
Purpose: Phosphatase and tensin homolog (PTEN) has been reported to act as a negative regulator of hepatic stellate cell (HSC) activation. However, the roles of PTEN in the effects of LQ on liver fibrosis have not been identified to date.
Methods: The effects of LQ on liver fibrosis in carbon tetrachloride (CCl) mice as well as primary HSCs were examined. Moreover, the roles of PTEN and microRNA-181b (miR-181b) in the effects of LQ on liver fibrosis were examined.
Results: LQ markedly ameliorated CCl-induced liver fibrosis, with a reduction in collagen deposition as well as α-SMA level. Moreover, LQ induced an increase in PTEN and effectively inhibited HSC activation including cell proliferation, α-SMA and collagen expression, which was similar with curcumin (a positive control). Notably, loss of PTEN blocked down the effects of LQ on HSC activation. PTEN was confirmed as a target of miR-181b and miR-181b-mediated PTEN was involved in the effects of LQ on liver fibrosis. LQ led to a significant reduction in miR-181b expression. LQ-inhibited HSC activation could be restored by over-expression of miR-181b. Further studies demonstrated that LQ down-regulated miR-181b level via Sp1. Collectively, we demonstrate that LQ inhibits liver fibrosis, at least in part, via regulation of miR-181b and PTEN.
Conclusion: LQ down-regulates miR-181b level, leading to the restoration of PTEN expression, which contributes to the suppression of HSC activation. LQ may be a potential candidate drug against liver fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2019.153108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!