Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diagnosis of carbon monoxide (CO) poisonings has always been a challenging task due to the susceptibility to alterations of the optical state and degradation of blood samples during sampling, transport and storage, which highly affects the analysis with spectrophotometric methods. Methodological improvements are then required urgently because of increased reports of cases with discrepancies between results of the measured biomarker carboxyhemoglobin (COHb) and reported symptoms. Total blood CO (TBCO) measured chromatographically was thus proposed in a previous study as alternative biomarker to COHb. This approach was investigated in this study by comparing the two biomarkers and assessing the effects of various storage parameters (temperature, preservative, time, tube headspace (HS) volume, initial saturation level, freeze- and thaw- and reopening-cycles) over a period of one month. Results show that while for TBCO, concentrations are relatively stable over the observation period regardless of parameters such as temperature, time and HS volume, for COHb, concentrations are altered significantly during storage. Therefore, the use of TBCO as alternative biomarker for CO poisonings has been proposed, since it provides more valid results and is more stable even under non-optimal storage conditions. Additionally, it can be used to predict COHb in cases where sample degradation hinders optical measurement. Furthermore, a correction formula for COHb and TBCO is provided to be used in laboratories or circumstances where optimal storage or analysis is not possible, to obtain more accurate results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2019.110063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!