Cloning and characterization of the virulence factor Hop from Vibrio splendidus.

Microb Pathog

State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Published: February 2020

Background: Vibrio splendidus is an aquaculture pathogen that can cause skin ulcer syndrome (SUS) in Apostichopus japonicus. HopPmaJ is a type III system effector (T3SE) that has been reported to be an important virulence factor. In this study, a gene named hop, which encodes HopPmaJ in V. splendidus was cloned and its cytotoxicity to coelomocytes and its effects on the expression of immune-related genes in A. japonicus were characterized.

Methods: Real time reverse transcription PCR (RT-PCR) was used to determine the expression of the hop gene under various conditions. To obtain the purified Hop, hop gene was conditionally expressed in Escherichia coli BL21(DE3) and was purified by GST tag. The cytotoxicity of Hop to coelomocyte was determined using MTT method, and the effect of Hop on the expression of immune-related genes was determined using real time RT-PCR.

Results: The deduced amino acid sequence of Hop from V. splendidus shared 84%-96% homology with those of Hops from other Vibrio spp. The expression of hop gene was induced not only by host-pathogen contact but also by high cell density. Purified recombinant Hop (rHop) showed cytotoxicity to the coelomocyte of A. japonicus. The cell viability decreased to approximately 42%, 26%, 32%, 30% and 20%, when 30, 50, 60, 80 and 100 μL of purified rHop was added, respectively. After being injected with rHop, the expression levels of immune-related genes that encode complement component (C1q) and caspase were significantly increased, and the production of reactive oxygen species were also increased in A. japonicus.

Conclusion: Our results indicated that Hop not only contributed to the cytotoxicity to coelomocyte, but also caused immune response in A. japonicus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2019.103900DOI Listing

Publication Analysis

Top Keywords

immune-related genes
12
hop gene
12
hop
11
virulence factor
8
vibrio splendidus
8
expression immune-related
8
real time
8
expression hop
8
cytotoxicity coelomocyte
8
expression
5

Similar Publications

Transposable elements shape the landscape of heterozygous structural variation in a bird genome.

Zool Res

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:

Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.

View Article and Find Full Text PDF

Backgrounds: Collagen type I alpha 1 chain (COL1A1) is a key protein encoding fibrillar collagen, playing a crucial role in the tumor microenvironment (TME) due to its complex functions and close association with tumor invasiveness. This has made COL1A1 a focal point in cancer biology research. However, studies investigating the relationship between COL1A1 expression levels and clinical characteristics of ovarian cancer (OC) remain limited.

View Article and Find Full Text PDF

Background: Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined.

Methods: We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively.

View Article and Find Full Text PDF

Transcriptomic and proteomic analysis reveals the mechanism of chicken cecum response to serovar Enteritidis inoculation.

iScience

January 2025

College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China.

serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation.

View Article and Find Full Text PDF

Unlabelled: Avian leukosis virus subgroup J (ALV-J) poses a significant threat to the poultry industry; yet, our understanding of its replication and pathogenic mechanisms is limited. The Ten-Eleven Translocation 2 (TET2) is an indispensable regulatory factor in active DNA demethylation and immune response regulation. This study reports a significant and time-dependent decrease in TET2 levels following ALV-J infection and shows that the reduction of TET2 protein is mediated by the autophagy pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!