Fast Affinity Induced Reaction Sensor Based on a Fluorogenic Click Reaction for Quick Detection of Protein Biomarkers.

Anal Chem

Multiplex Biotechnology Laboratory, Department of Biomedical Engineering , State University of New York at Stony Brook, Stony Brook , New York 11788 , United States.

Published: January 2020

Despite numerous biosensors currently available, the routine biomarker detection still largely relies on traditional ELISA and Western blot. Those standard techniques are labor intensive and time-consuming. Herein we introduce a fast affinity induced reaction sensor (FAIRS) that overcomes a few limitations of traditional and emerging biosensors. FAIRS is a general, one-step method and is naturally specific in detection. FAIRS probes are composed of a sandwich ELISA antibody pair that is conjugated with two fluorogenic click chemicals. This technology leverages significant differences of antibody affinity and chemical reaction rate, which are characterized to guide probe design. The stability, sensitivity, detection range, and response time are fully characterized. Application to IL-6 detection using blood serum and cell culture medium demonstrates that FAIRS can quantify IL-6 with high sensitivity in one step. With the unique features, FAIRS probes may find broad applications in medical sciences and clinical diagnostics, where quick detection of biomarkers is demanded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183201PMC
http://dx.doi.org/10.1021/acs.analchem.9b04502DOI Listing

Publication Analysis

Top Keywords

fast affinity
8
affinity induced
8
induced reaction
8
reaction sensor
8
fluorogenic click
8
quick detection
8
fairs probes
8
detection
6
fairs
5
reaction
4

Similar Publications

The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.

View Article and Find Full Text PDF

Dapagliflozin attenuates skeletal muscle atrophy in diabetic nephropathy mice through suppressing Gasdermin D-mediated pyroptosis.

Int Immunopharmacol

January 2025

School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China; Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China. Electronic address:

Background: Skeletal muscle atrophy is a clinical concern in diabetic nephropathy, and without effective therapeutic approaches. Massive evidence has demonstrated that dapagliflozin, a sodium-glucose co-transporter 2 inhibitor can relieve diabetic nephropathy by inhibiting glucose re-absorption or podocyte pyroptosis. Nevertheless, whether dapagliflozin could treat skeletal muscle atrophy or the potential protection mechanism in diabetic nephropathy mice is unclear.

View Article and Find Full Text PDF

A sensitive immunoassay for the rapid analysis of fluopicolide.

Talanta

January 2025

Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Av. Agustí Escardino 7, Paterna, 46980, Valencia, Spain. Electronic address:

The analysis of chemical xenobiotics in human, food, and environmental samples has become a global priority. Consequently, both public and private laboratories require rapid, cost-effective analytical methods for quality and safety control. Fluopicolide, a fungicide used to combat plant diseases, poses potential toxicological risks to humans and animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!