Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Experimentally, self-assembled morphologies of the (AB) starlike block copolymer are strongly dependent on the number of arms, . For example, the 2- and 4-arm starlike block copolymers exhibited the morphologies of hexagonally arrayed polystyrene cylinder in the polyisoprene matrix while order-bicontinuous nanostructures were observed in 8-, 12-, and 18-arm stars. Theoretically, we found that the transition sequence for (AB) is → → → , which becomes → when > 6. To explore the influence of on the phase behavior of (AB) under cylindrical confinement, we calculated the two-dimensional phase diagram with respect to the volume fraction and the pore diameter. Our conclusions show that the topologies of the phase diagram are independent of the number of arms; however, the number of arms does affect the phase boundary, which inevitably leads to the different phase transition sequences at fixed volume fraction. Therefore, from the calculated phase diagram, the influence of on the phase behavior of the starlike copolymer is fully understood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!