A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNA files in the prevention of intestinal ischemia/reperfusion injury by hydrogen rich saline. | LitMetric

Background: Hydrogen-rich saline (HRS) has been proven effective against ischemia/reperfusion (I/R) injury. However, knowledge on the underlying signaling events remain poor. Having recent highlight of microRNAs (miRNAs) in mediating intestinal I/R injury, we hypothesized that HRS may protect intestine against I/R injury by regulating miRNAs.

Method: Mice were given intraperitoneal injection of saline or HRS once daily for five consecutive days before undergoing intestinal I/R that was induced by 60-min ischemia followed by 180-min reperfusion of superior mesenteric artery. The intestine was collected for histopathological assay, miRNA microarray profiling, Real-Time PCR, and Western blotting. Next, miR-199a-3p mimics or inhibitors were transfected into IEC-6 cells to explore the relationship between HRS treatment and miR-199a-3p.

Results: I/R-induced mucosal injury and epithelial cells apoptosis were attenuated by HRS pretreatment. A total of 64 intestinal I/R-responsive miRNAs were altered significantly by HRS pretreatment, in which we validated four novel miRNAs with top significance by Real-Time PCR, namely miR-199a-3p, miR-296-5p, miR-5126, and miR-6538. Particularly, miR-199a-3p was drastically increased by I/R but reduced by HRS. Computational analysis predicts insulin-like growth factor (IGF)-1, mammalian target of rapamycin (mTOR), and phosphoinositide-3-kinase (PI3K) regulatory subunit 1 as targets of miR-199a-3p, suggesting involvement of the pro-survival pathway, IGF- 1/PI3K/Akt/mTOR. In in vitro experiment, HRS treatment reduced miR-199a-3p level, increase IGF-1, PI3K and mTOR mRNA expression, restore IEC-6 cells viability, and this protective effects were reversed under miR-199a-3p mimics treatment.

Conclusion: Collectively, miR-199a-3p may serve a key role in the anti-apoptotic mechanism of HRS that contributes to its protection of the intestine against I/R injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981100PMC
http://dx.doi.org/10.1042/BSR20191043DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
hrs
9
saline hrs
8
intestinal i/r
8
intestine i/r
8
real-time pcr
8
mir-199a-3p mimics
8
iec-6 cells
8
hrs treatment
8
hrs pretreatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!