Isolation and Culture of Oculomotor, Trochlear, and Spinal Motor Neurons from Prenatal Islmn:GFP Transgenic Mice.

J Vis Exp

Department of Neurology, Boston Children's Hospital; FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Medical Genetics Training Program, Harvard Medical School; Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; Broad Institute of M.I.T. and Harvard; Howard Hughes Medical Institute;

Published: November 2019

Oculomotor neurons (CN3s) and trochlear neurons (CN4s) exhibit remarkable resistance to degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS) when compared to spinal motor neurons (SMNs). The ability to isolate and culture primary mouse CN3s, CN4s, and SMNs would provide an approach to study mechanisms underlying this selective vulnerability. To date, most protocols use heterogeneous cell cultures, which can confound the interpretation of experimental outcomes. To minimize the problems associated with mixed-cell populations, pure cultures are indispensable. Here, the first protocol describes in detail how to efficiently purify and cultivate CN3s/CN4s alongside SMNs counterparts from the same embryos using embryonic day 11.5 (E11.5) Isl:GFP transgenic mouse embryos. The protocol provides details on the tissue dissection and dissociation, FACS-based cell isolation, and in vitro cultivation of cells from CN3/CN4 and SMN nuclei. This protocol adds a novel in vitro CN3/CN4 culture system to existing protocols and simultaneously provides a pure species- and age-matched SMN culture for comparison. Analyses focusing on the morphological, cellular, molecular, and electrophysiological characteristics of motor neurons are feasible in this culture system. This protocol will enable research into the mechanisms that define motor neuron development, selective vulnerability, and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036286PMC
http://dx.doi.org/10.3791/60440DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
spinal motor
8
motor neuron
8
selective vulnerability
8
culture system
8
motor
5
neurons
5
isolation culture
4
culture oculomotor
4
oculomotor trochlear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!