Okra stem biochar (OSBC) and black gram straw biochar (BGSBC) were prepared by slow pyrolysis at 500 and 600 °C, respectively. OSBC and BGSBC were characterized using , Fourier transform infrared, X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, SEM-energy dispersive X-ray, and energy dispersive X-ray fluorescence. High carbon contents (dry basis) of 66.2 and 67.3% were recorded in OSBC and BGSBC, respectively. The OSBC surface area (23.52 m/g) was higher than BGSBC (9.27 m/g). The developed biochars successfully remediate fluoride contaminated water. Fluoride sorption experiments were accomplished at 25, 35, and 45 °C. Biochar-fluoride adsorption equilibrium data were fitted to Langmuir, Freundlich, Sips, Temkin, Koble-Corrigan, Radke and Prausnitz, Redlich-Peterson, and Toth isotherm models. The sorption dynamic data was better fitted to the pseudo-second order rate equation versus the pseudo-first order rate equation. The Langmuir sorption capacities of = 20 mg/g and = 16 mg/g were obtained. Biochar fixed-bed dynamic studies were accomplished to ascertain the design parameters for developing an efficient and sustainable fluoride water treatment system. A column capacity of 6.0 mg/g for OSBC was achieved. OSBC and BGSBC satisfactorily remediated fluoride from contaminated ground water and may be considered as a sustainable solution for drinking water purification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881843PMC
http://dx.doi.org/10.1021/acsomega.9b00877DOI Listing

Publication Analysis

Top Keywords

osbc bgsbc
12
efficient sustainable
8
sustainable fluoride
8
okra stem
8
black gram
8
gram straw
8
electron microscopy
8
dispersive x-ray
8
fluoride contaminated
8
order rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!