Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results. Food availability and single-generation exposure have been proposed as some of the reasons for these variable results, where unrealistically high food treatments lead to fish overcoming the energetic costs associated with acclimating to decreased pH. Likewise, exposure of fish to lower pH for only one generation may not capture the likely ecological response to acidification that wild populations might experience over two or more generations. Here we compare somatic growth rates of laboratory populations of the Trinidadian guppy () exposed to pH levels that represent the average and lowest levels observed in streams in its native range. Specifically, we test the role of maternal acclimation and resource availability on the response of freshwater fishes to acidification. Acidification had a negative impact on growth at more natural, low food treatments. With high food availability, fish whose mothers were acclimated to the acidified treatment showed no reduction in growth, compared to controls. Compensatory growth was observed in both control-acidified (maternal-natal environment) and acidified-control groups, where fish that did not experience intergenerational effects achieved the same size in response to acidification as those that did, after an initial period of stunted growth. These results suggest that future studies on the effects of shifting mean of aquatic pH on fishes should take account of intergenerational effects and compensatory growth, as otherwise effects of acidification may be overestimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875657 | PMC |
http://dx.doi.org/10.1002/ece3.5761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!