The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in 'regulation of angiogenesis' and 'central nervous system development'. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in 'bladder cancer' and 'endocytosis'. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in 'central nervous system development', 'bladder cancer' and 'rheumatoid arthritis'. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865749 | PMC |
http://dx.doi.org/10.3892/ol.2019.10988 | DOI Listing |
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFChem Biodivers
January 2025
Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.
Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFJ Virol
January 2025
Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.
Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!