Magnetic resonance imaging (MRI) has been proposed as a source of information for automatic prediction of individual diagnosis in schizophrenia. Optimal integration of data from different MRI modalities is an active area of research aimed at increasing diagnostic accuracy. Based on a sample of 96 patients with schizophrenia and a matched sample of 115 healthy controls that had undergone a single multimodal MRI session, we generated individual brain maps of gray matter vbm, 1back, and 2back levels of activation (back fMRI), maps of amplitude of low-frequency fluctuations (resting-state fMRI), and maps of weighted global brain connectivity (resting-state fMRI). Four unimodal classifiers (Ridge, Lasso, Random Forests, and Gradient boosting) were applied to these maps to evaluate their classification accuracies. Based on the assignments made by the algorithms on test individuals, we quantified the amount of predictive information shared between maps (what we call redundancy analysis). Finally, we explored the added accuracy provided by a set of multimodal strategies that included post-classification integration based on probabilities, two-step sequential integration, and voxel-level multimodal integration through one-dimensional-convolutional neural networks (1D-CNNs). All four unimodal classifiers showed the highest test accuracies with the 2back maps (80% on average) achieving a maximum of 84% with the Lasso. Redundancy levels between brain maps were generally low (overall mean redundancy score of 0.14 in a 0-1 range), indicating that each brain map contained differential predictive information. The highest multimodal accuracy was delivered by the two-step Ridge classifier (87%) followed by the Ridge maximum and mean probability classifiers (both with 85% accuracy) and by the 1D-CNN, which achieved the same accuracy as the best unimodal classifier (84%). From these results, we conclude that from all MRI modalities evaluated task-based fMRI may be the best unimodal diagnostic option in schizophrenia. Low redundancy values point to ample potential for accuracy improvements through multimodal integration, with the two-step Ridge emerging as a suitable strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855131PMC
http://dx.doi.org/10.3389/fnins.2019.01203DOI Listing

Publication Analysis

Top Keywords

multimodal integration
12
diagnosis schizophrenia
8
mri modalities
8
brain maps
8
fmri maps
8
resting-state fmri
8
unimodal classifiers
8
low redundancy
8
two-step ridge
8
best unimodal
8

Similar Publications

Multimodal cross-scale context clusters for classification of mental disorders using functional and structural MRI.

Neural Netw

January 2025

The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

The brain is a complex system with multiple scales and hierarchies, making it challenging to identify abnormalities in individuals with mental disorders. The dynamic segregation and integration of activities across brain regions enable flexible switching between local and global information processing modes. Modeling these scale dynamics within and between brain regions can uncover hidden correlates of brain structure and function in mental disorders.

View Article and Find Full Text PDF

Personalized sports training plans are essential for addressing individual athlete needs, but traditional methods often need to integrate diverse data types, limiting adaptability and effectiveness. Existing machine learning (ML) and rule-based approaches cannot dynamically generate context-specific training programs, reducing their applicability in real-world scenarios. This study aims to develop a Generative Adversarial Network (GAN)- based framework to create context-specific training plans by integrating numeric attributes (e.

View Article and Find Full Text PDF

Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.

Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.

View Article and Find Full Text PDF

[An update on surgical treatment options for inflammatory bowel disease].

Inn Med (Heidelb)

January 2025

Klinik für Allgemein‑, Viszeral- und Thoraxchirurgie, Klinikum Darmstadt GmbH, Grafenstraße 9, 64283, Darmstadt, Deutschland.

There are national and international guidelines and developments for the surgery of chronic inflammatory bowel disease (IBD) that contribute to better patient care. Important recommendations include increasingly individualized and minimally invasive approaches with the integration of new technologies. The indication for abdominal surgery remains tied to specialization, not least in order to continue to be able to assess the importance of sequential treatment and multimodality in improving surgical results and minimizing risks.

View Article and Find Full Text PDF

An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu City, Sichuan Province, 610041, China.

Background: Pathological grade is a critical determinant of clinical outcomes and decision-making of follicular lymphoma (FL). This study aimed to develop a deep learning model as a digital biopsy for the non-invasive identification of FL grade.

Methods: This study retrospectively included 513 FL patients from five independent hospital centers, randomly divided into training, internal validation, and external validation cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!