It is of interest to elucidate the binding mode analysis of 18 sulphonated flavones in the non nucleoside inhibitory binding pocket of the HIV-1 reverse transcriptase (PDB ID: 1RTD). We further compared them with the known Non Nucleosidic Reverse Transcriptase Inhibitors (NNRTI) drug molecules such as delaviridine, nevirapine and etravirine. Molecular docking studies of sulphonated flavones were performed in the binding pocket of reverse transcriptase using the PatchDock server. The flavones have different binding energies with RT and the atomic contact energy (ACE) value of sulfonated flavones range from-389 to-231 Kcal/mol while docking of the commercialized NNRTI showed the ACE value range from -486 to -224 Kcal/mol. This shows that most sulfonated flavones have ACE similar to the known NNRTI. Thus, seven compounds (FS-6, FS-7, FS-8, FS-9, FS-14, FS-15, FS-17) were reported as potent, selective, orally bio available, and nontoxic lead based on ADMET screening and effective binding analysis in the active site of the reverse transcriptase (PDB ID: 1RTD) for further consideration. We further document that compounds (FS-1, FS-10, FS-4 and FS-12) have unfavorable binding features to be considered as leads.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859701 | PMC |
http://dx.doi.org/10.6026/97320630015646 | DOI Listing |
Background: Viral gastroenteritis is a significant global health concern. An effective, rapid, and easy-to-use diagnostic tool is essential for screening causative viruses.
Methods: Forty-eight samples, known to be infected with one of the following viruses: norovirus, group A rotavirus, astrovirus, adenovirus, and sapovirus determined by reverse transcription-PCR and nucleotide sequencing, were evaluated by the Fast Track Diagnostics (FTD) viral gastroenteritis assay.
Antimicrob Agents Chemother
January 2025
Merck & Co., Inc, Rahway, New Jersey, USA.
The development of new and improved antiretroviral therapies that allow for alternative dosing schedules is needed for people living with HIV-1. Islatravir is a deoxyadenosine analog in development for the treatment of HIV-1 that suppresses HIV-1 replication via multiple mechanisms of action, including reverse transcriptase translocation inhibition and delayed chain termination. Islatravir is differentiated from other HIV-1 antiretrovirals by its high potency, long , broad tissue distribution, and favorable drug resistance profile.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
Department of Infectious Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
In 2023, we published a case study involving a 10-year-old HIV-1-infected child with low-level viremia (LLV). We showed that this child patient achieved successful viral suppression by modifying the antiretroviral therapy (ART) regimen according to the HIV-1 DNA genotypic drug resistance testing. In this study, we aimed to address whether HIV-1 DNA genotypic drug resistance testing could direct successfully virological suppression in HIV-1-infected patients experiencing persistent LLV based on evidence from a cohort study.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
Bacterial infections can induce exuberant immune responses that can damage host tissues. Previously, we demonstrated that systemic infection in mice causes tissue damage in the liver. This liver necrosis is associated with the expression of endogenous retroviruses, chromosomally integrated retroviruses that encode a reverse transcriptase.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Intermolecular Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!