Pharmacogenomic biomarker availability of Hungarian Summaries of Product Characteristics (SmPC) was assembled and compared with the information in US Food and Drug Administration (FDA) drug labels of the same active substance (July 2019). The level of action of these biomarkers was assessed from The Pharmacogenomics Knowledgebase database. From the identified 264 FDA approved drugs with pharmacogenomic biomarkers in drug label, 195 are available in Hungary. From them, 165 drugs include pharmacogenomic data disposing 222 biomarkers. Most of them are metabolizing enzymes (46%) and pharmacological targets (41%). The most frequent therapeutic area is oncology (37%), followed by infectious diseases (12%) and psychiatry (9%) (p < 0.00001). Most common biomarkers in Hungarian SmPCs are CYP2D6, CYP2C19, estrogen and progesterone hormone receptor (ESR, PGS). Importantly, US labels present more specific pharmacogenomic subheadings, the level of action has a different prominence, and offer more applicable dose modifications than Hungarians (5% vs 3%). However, Hungarian SmPCs are at 9 oncology drugs stricter than FDA, testing is obligatory before treatment. Out of the biomarkers available in US drug labels, 62 are missing completely from Hungarian SmPCs (p < 0.00001). Most of these belong to oncology (42%) and in case of 11% of missing biomarkers testing is required before treatment. In conclusion, more factual, clear, clinically relevant pharmacogenomic information in Hungarian SmPCs would reinforce implementation of pharmacogenetics. Underpinning future perspective is to support regulatory stakeholders to enhance inclusion of pharmacogenomic biomarkers into Hungarian drug labels and consequently enhance personalized medicine in Hungary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253355 | PMC |
http://dx.doi.org/10.1038/s41397-019-0123-z | DOI Listing |
Psychopharmacol Bull
January 2025
Oslin, MD, Veterans Integrated Service Network 4, Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center and Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
Background: Immunologic measures have been studied as predictors of who will respond to standard antidepressants. Two previous, small studies of pretreatment leukocyte mRNA expression levels of the cytokines macrophage migration inhibitory factor (MIF) and interleukin 1-beta (IL1-β) identified antidepressant treatment responders.
Methods: We tested these findings in 1,299 patients from the PRIME Care study, a multi-center pharmacogenetic depression treatment trial.
Cell Biosci
December 2024
Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).
View Article and Find Full Text PDFJ Pers Med
December 2024
Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium.
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Department of Dermatology, Saint-Louis Hospital, AP-HP, Paris, France.
[This corrects the article DOI: 10.1016/j.eclinm.
View Article and Find Full Text PDFTransl Oncol
December 2024
Saint Camillus International University of Medical and Health Sciences, Rome, Italy; Direzione Scientifica Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.
Background: Circulating tumor DNA (ctDNA) revolutionized the molecular diagnostics of lung cancer by enabling non-invasive, sensitive identification of actionable mutations. However, ctDNA analysis may be challenging due to tumor shedding variability, leading to false negative results. This study aims to understand the determinants for ctDNA shedding based on clinical characteristics of lung cancer patients, for a better interpretation of false negative results to be considered when ordering ctDNA analysis for clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!