AI Article Synopsis

  • * Researchers determined its three-dimensional structure, revealing that zinc binding creates steric hindrance that blocks substrate entry into the active site, explaining the inhibition by zinc.
  • * Despite similarities between RNase He1 and RNase Po1 from the Hiratake mushroom, RNase He1 has a negative surface charge, preventing it from binding to cell membranes and thus lacking antitumor activity, unlike the positively charged RNase Po1.

Article Abstract

RNase He1 is a guanylic acid-specific ribonuclease of the RNase T1 family from Hericium erinaceus (Japanese name: Yamabushitake). Its RNA degrading activity is strongly inhibited by Zn, similar to other T1 family RNases. However, RNase He1 shows little inhibition of human tumor cell proliferation, unlike RNase Po1, another T1 family RNase from Pleurotus ostreatus (Japanese name: Hiratake). Here, we determined the three-dimensional X-ray crystal structure of RNase He1 in complex with Zn, which revealed that Zn binding most likely prevents substrate entry into the active site due to steric hindrance. This could explain why RNase He1 and other T1 family RNases are inhibited by Zn. The X-ray crystal structures revealed that RNase He1 and RNase Po1 are almost identical in their catalytic sites and in the cysteine residues involved in disulfide bonds that increase their stability. However, our comparison of the electrostatic potentials of their molecular surfaces revealed that RNase He1 is negative whereas RNase Po1 is positive; thus, RNase He1 may not be able to electrostatically bind to the plasma membrane, potentially explaining why it does not exhibit antitumor activity. Hence, we suggest that the cationic characteristics of RNase Po1 are critical to the anti-tumor properties of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b19-00532DOI Listing

Publication Analysis

Top Keywords

rnase he1
32
rnase po1
16
rnase
14
hericium erinaceus
8
ribonuclease rnase
8
he1
8
he1 complex
8
family rnases
8
x-ray crystal
8
revealed rnase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!