Research on plant biostimulants is of interest in their potential benefits for agriculture production and environmental sustainability. These naturally occurring products induce beneficial consequences in plant metabolism and productivity. In most cases their modes of action, and consequences for the whole plant as well as parts, such as the fruit, are well characterized, but the precise mechanisms of action require further attention. This study examined the effects of the commercial biostimulant, Actium®, on Capsicum annuum L. cv Palermo leaves and fruits. The influence of time (characterized by ripening), after 14 and 28 days of treatment, treatment regimen, and their combined impact on the metabolome were studied using HPLC-ESI-QTOF-MS analysis of polar and apolar compounds. The results showed that flavonoids and capsianosides decreased with ripening in leaves, but organic acids, monosaccharides, and carotenoids increased in fruits. The treatment of Capsicum fruits with Actium® increased phenylalanine and total monosaccharides (glucose and fructose) compared to controls, suggesting a further stage in ripening. An increase in carotenoids concomitant with an increase of some digalactosyl diacylglycerols, which are part of the chromoplasts lipid machinery of enzymes involved in the synthesis of carotenoids, was also observed. Our findings suggest that this biostimulant may increase some metabolites related to pepper fruit maturity and coloration in pepper crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.125818 | DOI Listing |
Surg Obes Relat Dis
December 2024
Department of Surgery, Rush University Medical Center, Chicago, Illinois. Electronic address:
Background: Metabolic bariatric surgery is the most effective therapy for severe obesity, which affects the health of millions, most of whom are women of child-bearing age. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are the most common bariatric procedures and are associated with durable weight loss and comorbidity resolution. Although obstetric outcomes broadly improve, the safety profile comparing the impact of RYGB and SG on obstetric outcomes is underexplored.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.
View Article and Find Full Text PDFAnn Epidemiol
December 2024
Department of Internal Medicine, University of Botswana, Gaborone, Botswana.
Identifying and monitoring adverse effects (AEs) are integral to ensuring patient safety in clinical trials. Research sponsors and regulatory bodies have put into place a variety of policies and procedures to guide researchers in protecting patient safety during clinical trials. However, it remains unclear how these policies and procedures should be adapted for trials in implementation science.
View Article and Find Full Text PDFAnal Biochem
December 2024
Department of Biochemistry, Kampala International University-Western Campus, Ishaka, Uganda.
Aptamers, single-stranded nucleic acids that bind to specific targets with high affinity and specificity, hold significant promise in various biomedical and biotechnological applications. The traditional method of aptamer selection, SELEX (Systematic Evolution of Ligands by EXponential Enrichment) takes a lot of work and time. Recent advancements in computational methods have revolutionized aptamer design, offering efficient and effective alternatives.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:
The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!