5-Bromo-2'-deoxyuridine triphosphate (Br-dUTP) and dTTP are used interchangeably for DNA synthesis in vitro by the Klenow fragment of Escherichia coli DNA polymerase I. When DNA containing Br-dUMP instead of dTMP at a few preselected sites is transfected into competent bacteria, no mutation occurs, indicating that in vivo E. coli DNA polymerase always places a dAMP residue in front of any unrepaired Br-dUMP residue. On the other hand, in vitro Br-dUTP can also replace dCTP, but only with difficulty: when dCTP is absent, Br-dUMP can be forced in front of a dGMP residue, but the Klenow polymerase pauses before and after addition of Br-dUMP. Transfection into E. coli of the substituted DNA leads to the expected G----A transitions. These mutations can easily be targeted by using a suitable primer and the correctly chosen mix of deoxynucleoside triphosphates containing Br-dUTP. When Br-dUMP has been placed in front of a dGMP residue, the mutation yield is not 100%, showing a partial repair of the transfected DNA before it is replicated. Advantage can be taken of this partial repair to prepare a set of different mutations within a target region in a single experiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1149354 | PMC |
http://dx.doi.org/10.1042/bj2530637 | DOI Listing |
Front Microbiol
January 2025
College Food Science and Light Industry, Nanjing Tech University, Nanjing, China.
A colloidal gold immunochromatographic assay (ICA) based on a dual-antibody sandwich method was developed for the rapid and convenient detection of () antigens in the early stages of infection. Monoclonal antibodies designed as 5B3 targeting the conserved region of 56 kDa outer membrane protein in various strains of were generated through cell fusion and screening techniques and combined with previously prepared polyclonal antibodies as detection antibodies to establish the ICA. Colloidal gold and polyclonal antibody-colloidal gold complexes were synthesized under optimized conditions.
View Article and Find Full Text PDFFront Antibiot
January 2025
Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany.
Because of the global spread of multi- and pan-resistant bacteria, there is a need to identify, research, and develop new strategies to combat these pathogens. In a previous proof-of-concept study, we presented an innovative strategy by genetically modifying lytic T7 bacteriophages. We integrated DNA fragments encoding for derivatives of the antimicrobial peptide (AMP) apidaecin into the phage genome to induce the production and release of apidaecin within the T7 infection cycle, thereby also targeting phage-resistant bacteria.
View Article and Find Full Text PDFFuture Microbiol
January 2025
Universidad San Francisco de Quito, Colegio de Ciencias Biológicas Ambientales, Instituto de Microbiología, Quito, Ecuador.
Aim: To investigate the nucleotide sequences associated with transposable elements carrying bla allelic variants as potential markers for the transmission of antimicrobial resistance genes between domestic animals, humans and the environment.
Materials & Methods: We conducted whole-genome sequencing and analyzed the nucleotide sequences of most abundant bla allelic variants (bla, bla, and bla) in commensal Escherichia coli ( = 20) from household members in Quito and uropathogenic E. coli (UPEC) ( = 149) isolated from nine clinics in Quito, Ecuador.
mBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
To ensure high quality of food and water, the identification of traces of pathogens is mandatory. Rapid nucleic acid-based tests shorten traditional detection times while maintaining low detection limits. Challenging is the loss of nucleic acids during necessary purification processes, since elution off solid surfaces is not efficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!