[1.1.1]Propellane is a highly strained tricyclic hydrocarbon whose reactivity is dominated by addition reactions across the central inverted bond to provide bicyclo[1.1.1]pentane derivatives. These reactions proceed under both radical and two-electron pathways, hence, providing access to a diverse array of products. Conversely, transition metal-catalyzed reactions of [1.1.1]propellane are underdeveloped and lack synthetic utility, with reported examples generally yielding mixtures of ring-opened structural isomers, dimers, and trimers, often with poor selectivity. Herein, we report that nickel(0) catalysis enables the use of [1.1.1]propellane as a carbene precursor in cyclopropanations of a range of functionalized alkenes to give methylenespiro[2.3]hexane products. Computational studies provide support for initial formation of a Ni(0)-[1.1.1]propellane complex followed by concerted double C-C bond activation to give the key 3-methylenecyclobutylidene-nickel intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b10689 | DOI Listing |
J Am Chem Soc
December 2019
School of Chemistry , University of Bristol, Cantock's Close , Bristol BS8 1TS , U.K.
[1.1.1]Propellane is a highly strained tricyclic hydrocarbon whose reactivity is dominated by addition reactions across the central inverted bond to provide bicyclo[1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!