Introduction: Paracetamol is a common agent taken in deliberate self-poisoning and in accidental overdose in adults and children. Paracetamol poisoning is the commonest cause of severe acute liver injury. Since the publication of the previous guidelines in 2015, several studies have changed practice. A working group of experts in the area, with representation from all Poisons Information Centres of Australia and New Zealand, were brought together to produce an updated evidence-based guidance.

Main Recommendations (unchanged From Previous Guidelines): The optimal management of most patients with paracetamol overdose is usually straightforward. Patients who present early should be given activated charcoal. Patients at risk of hepatotoxicity should receive intravenous acetylcysteine. The paracetamol nomogram is used to assess the need for treatment in acute immediate release paracetamol ingestions with a known time of ingestion. Cases that require different management include modified release paracetamol overdoses, large or massive overdoses, accidental liquid ingestion in children, and repeated supratherapeutic ingestions.

Major Changes In Management In The Guidelines: The new guidelines recommend a two-bag acetylcysteine infusion regimen (200 mg/kg over 4 h, then 100 mg/kg over 16 h). This has similar efficacy but significantly reduced adverse reactions compared with the previous three-bag regimen. Massive paracetamol overdoses that result in high paracetamol concentrations more than double the nomogram line should be managed with an increased dose of acetylcysteine. All potentially toxic modified release paracetamol ingestions (≥ 10 g or ≥ 200 mg/kg, whichever is less) should receive a full course of acetylcysteine. Patients ingesting ≥ 30 g or ≥ 500 mg/kg should receive increased doses of acetylcysteine.

Download full-text PDF

Source
http://dx.doi.org/10.5694/mja2.50428DOI Listing

Publication Analysis

Top Keywords

release paracetamol
12
paracetamol
10
paracetamol poisoning
8
australia zealand
8
previous guidelines
8
paracetamol ingestions
8
modified release
8
paracetamol overdoses
8
acetylcysteine
5
updated guidelines
4

Similar Publications

BMP6 participates in the molecular mechanisms involved in APAP hepatotoxicity.

Arch Toxicol

January 2025

Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.

Given the lack of accurate diagnostic methods of acetaminophen (APAP)-induced acute liver failure (ALF), the search for new biomarkers for its diagnosis is an urgent need. The aim of this study was to evaluate the role of bone morphogenetic protein 6 (BMP6) in APAP-induced ALF progression and its potential value as a biomarker of ALF. Hepatic and circulating BMP6 expression was assessed in APAP-treated mice and in serum samples from patients with APAP overdose.

View Article and Find Full Text PDF

mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF.

Phytomedicine

January 2025

Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China. Electronic address:

Article Synopsis
  • Acute liver failure (ALF) is a severe condition with high mortality rates, prompting this study to explore the effects of Sini Decoction plus Ginseng Soup (SNRS) on liver health and immune response.
  • Using bioinformatics and network pharmacology, the research identified key glycolysis-related genes influencing macrophage polarization and found that SNRS can improve liver injury outcomes and survival rates in an ALF model.
  • The study concluded that SNRS may effectively treat ALF by altering macrophage behavior and glucose metabolism through the mTOR/HIF-1α pathway, revealing its potential as a therapeutic option.
View Article and Find Full Text PDF

Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).

View Article and Find Full Text PDF

Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury.

Front Immunol

January 2025

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.

Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.

View Article and Find Full Text PDF

Optimization of hypobaric and ultrasonic processing of persimmon rhamnogalacturonan-I to enhance drug-digestion interactions.

Int J Biol Macromol

January 2025

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Alicante, Spain. Electronic address:

The biological activity of polysaccharides used for nutraceuticals/drug excipients has been a neglected area of study. This work deals with the preparation, optimization, characterization, and evaluation of persimmon (Diospyros kaki Thunb.) fruit by-products and the study of the resultant dietary fiber (DF) interaction with other compounds, using acetaminophen as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!