Three-Dimensional Culture of Mouse Eyecups.

Methods Mol Biol

Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.

Published: December 2020

Retinal neurons and glia in the adult vertebrate retina are differentiated from multipotent retinal progenitors in the eyecups under the regulation of intrinsic and extrinsic factors, but the molecular mechanism underlying the process is partially understood. Functional studies using engineered mice provide tremendous insight into the mechanisms of retinal cell differentiation, but in utero embryogenesis prevents manipulations of mouse embryonic retina. Mouse eyecup culture using a culture filter or insert has been developed, but retinal structure is often altered due to the flattening of mouse eyecups in these culture systems. In this chapter, we describe three-dimensional culture of embryonic mouse eyecups. In our system, cell differentiation, stratified retinal structure, and ciliary margins in cultured eyecups were reminiscent of those in vivo. Our 3D culture of mouse eyecups has multiple applications when wild-type or engineered mice are used as models for studying retinal cell differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671031PMC
http://dx.doi.org/10.1007/978-1-0716-0175-4_3DOI Listing

Publication Analysis

Top Keywords

mouse eyecups
16
cell differentiation
12
three-dimensional culture
8
culture mouse
8
engineered mice
8
retinal cell
8
retinal structure
8
mouse
6
eyecups
6
retinal
6

Similar Publications

How tissue-specific progenitor cells generate adult tissues is a puzzle in organogenesis. Using single-cell RNA sequencing of control and Six3 and Six6 compound-mutant mouse embryonic eyecups, we demonstrated that these two closely related transcription factors jointly control diverse target genes in multiple cell populations over the developmental trajectories of mouse embryonic retinal progenitor cells. In the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) graph of control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively.

View Article and Find Full Text PDF

A Simplified Method for Isolation and Culture of Retinal Pigment Epithelial Cells from Adult Mice.

J Vis Exp

May 2024

Department of Pathology, Case Western Reserve University; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University;

Retinal pigment epithelial cells (RPE) are critical for the proper function of the retina. RPE dysfunction is involved in the pathogenesis of important retinal diseases, such as age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. We present a streamlined approach for the isolation of RPE from murine adult eyes.

View Article and Find Full Text PDF

Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life.

View Article and Find Full Text PDF

Purpose: Complement dysregulation in the eye has been implicated in the pathogenesis of age-related macular degeneration (AMD), and genetic variants of complement factor H (CFH) are strongly associated with AMD risk. We therefore aimed to untangle the role of CFH and its splice variant, factor H-like 1 (FHL-1), in ocular complement regulation derived from local versus circulating sources. We assessed the therapeutic efficacy of adeno-associated viruses (AAVs) expressing human FHL-1 and a truncated version of CFH (tCFH), which retains the functional N- and C-terminal ends of the CFH protein, in restoring the alternative complement pathway in Cfh-/- mouse eyes and plasma.

View Article and Find Full Text PDF

EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1  R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!