Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2019.154939 | DOI Listing |
Mol Cell Neurosci
December 2024
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.
In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.
View Article and Find Full Text PDFDiscov Med
December 2024
Department of the Second Ward of Gynecology, Maternity and Child Health Care Hospital of Gansu Provincial, 730000 Lanzhou, Gansu, China.
Backgrounds: Recent studies have proven the oncogenic role of kinesin family member 20A () in several cancers. Tumor-associated macrophages (TAMs) were reported to participate in tumor initiation and metastasis. In this study, we aimed to explore the detailed mechanism underlying in regulating the progression of ovarian cancer and its involvement with TAMs.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!