Preclinical bioassay of a novel antibacterial mesh for the repair of abdominal hernia defects.

Surgery

Department of Surgery, Medical and Social Sciences. Faculty of Medicine and Health Sciences. University of Alcalá, Madrid, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.

Published: March 2020

Background: In hernia surgery, soaking of meshes in antibiotics before implantation is a prophylactic strategy for minimizing the risk of infection while providing minimal, local, drug doses. This study describes the development and application of an antibacterial mesh coating comprising a carboxymethylcellulose gel loaded with rifampicin in a preclinical model of Staphylococcus aureus and S. epidermidis infection in rabbits.

Methods: Antibacterial activity and cytocompatibility (with fibroblasts) of unloaded carboxymethylcellulose gel and 0.13 mg/mL rifampicin-carboxymethylcellulose gel were assessed in vitro. Then, partial abdominal wall defects (5 × 2 cm) were created in New Zealand white rabbits (n = 34), the wound inoculated with 0.25 mL of 10 CFU Staphylococcus aureus/ S. epidermidis (n = 17 each), and the defect then repaired with a lightweight, monofilament, large pore polypropylene mesh either uncoated (n = 3) or coated with carboxymethylcellulose gel (n = 7) or rifampicin-carboxymethylcellulose gel (n = 7). By postoperative day 14, coating performance was evaluated by determining bacterial adhesion (via sonication), host tissue incorporation (via histology), macrophage response via immunostaining), and bloodstream drug diffusion (via high-performance liquid chromatography).

Results: In vitro, rifampicin-carboxymethylcellulose gel demonstrated great activity against Staphylococcus aureus/S. epidermidis, while being innocuous for fibroblasts. In vivo, rifampicin-carboxymethylcellulose gel-coated implants displayed full bacterial clearance and optimal tissue integration, irrespective of the strain of Staphylococcus. In contrast, uncoated and carboxymethylcellulose gel-coated implants exhibited macro/microscopic signs of infection and impaired tissue integration. Macrophage responses were less in rifampicin-carboxymethylcellulose gel implants than in uncoated mesh (Staphylococcus aureus/S. epidermidis; P < .01) and carboxymethylcellulose gel (S. epidermidis; P < .05) implants. Bloodstream levels of rifampicin were undetectable.

Conclusion: Soaking meshes in rifampicin-carboxymethylcellulose gel inhibited effectively the bacterial adhesion to the mesh without compromising the tissue repair. This antibiotic gel constitutes an easy-to-use and effective prophylactic strategy that potentially reduce the prevalence of postoperative mesh infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.surg.2019.10.010DOI Listing

Publication Analysis

Top Keywords

rifampicin-carboxymethylcellulose gel
20
carboxymethylcellulose gel
16
gel
10
antibacterial mesh
8
soaking meshes
8
prophylactic strategy
8
gel n =
8
bacterial adhesion
8
staphylococcus aureus/s epidermidis
8
gel-coated implants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!