Recent advances in three-dimensional (3D) bioprinting technologies have enabled precise patterning of cellular components along with biomimetic constructs for tissue engineering and regenerative medicine. The viscoelasticity of bioinks regulate printability and the smallest feature size in 3D bioprinted constructs. The impact of cellular components is typically neglected when choosing 3D bioprinting parameters. In this short communication, we quantified the effect of cell densities on the printability of hydrogel bioinks. Unexpectedly, our results show that encapsulated cells reduced the steady shear viscosity of gelatin-based bioinks by approximately 50% and the minimum force for onset of flow by approximately 30%. These results may justify the lower spatial resolution in 3D bioprinted cell-laden hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2019.103524 | DOI Listing |
Adv Biotechnol (Singap)
December 2023
Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infection worldwide due to its antimicrobial resistance. Plant-derived essential oils (EOs) have undergone extensive observational and clinical research to explore their antimicrobial properties. The present study aimed to check mec A positive MRSA isolates using sequencing analysis, determination of chemical composition using gas chromatography-mass spectroscopy (GC-MS), antioxidant, and antimicrobial activity of Anethum graveolens and Piper betle EOs against the infectious agent MRSA.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
March 2024
Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.
Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!