Introduction: The high frequency of functional gastrointestinal disorders (FGIDs) in autism spectrum disorders (ASD) has drawn attention to the composition of gut microbiota as a possible factor in ASD pathogenesis. However, characterization of a distinctive ASD microbial pattern is still unclear.
Objective: To conduct a narrative review on ASD microbial profile and diversity changes relative to NT children and FGID comorbidity and ASD pathogenesis.
Methodology: First, we searched the PubMed database in peer-reviewed journals for evidence regarding the current epidemiological evidence on FGID comorbidity. For the identification of a microbial profile in ASD children, only original studies examining gut bacterial and fungal abundances and diversity in ASD children and adolescents were included. Lastly, research on the role of microbial dysbiosis as an interface between genetic and environmental risk factors in the pathogenesis of neuropsychiatric disorders, and specifically ASD, was examined.
Results: Prevalence and risk of FGIDs is significantly higher in ASD children and correlates with the severity of ASD. Bacterial and fungal diversity differ between ASD and NT children, indicating a difference in taxonomic abundance profiles, which have been reported at all bacterial phylogenetic levels. However, studies analyzing gut microbiota have a heterogeneous methodology and several limitations that could account for the variety of findings for each taxon. Also, covariate analysis reveals influence of demographics, diet, disease severity, GI comorbidity and allergies. Integration of these findings with changes in metabolome and genetic risk factors allowed for a better understanding of microbiota involvement in ASD pathogenesis for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajp.2019.101874 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China.
Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy.
Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.
Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).
Int J Mol Sci
January 2025
Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!