Prevalence and time trend analysis of antimicrobial resistance in respiratory bacterial pathogens collected from diseased pigs in USA between 2006-2016.

Res Vet Sci

Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, USA; VISAVET Health Surveillance Center, Universidad Complutense, Madrid, Spain; Department of Animal Health, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain. Electronic address:

Published: February 2020

Swine respiratory disease complex (SRDC) causes massive economic losses to the swine industry and is a major animal welfare concern. Antimicrobials are mainstay in treatment and control of SRDC. However, there is a lack of data on the prevalence and trends in resistance to antimicrobials in bacterial pathogens associated with SRDC. The objective of this study was to estimate the prevalence and changes in resistance to 13 antimicrobials in swine bacterial pathogens (Streptococcus suis, Pasteurella multocida, Actinobacillus suis and Haemophilus parasuis) in the U.S.A using data collected at University of Minnesota Veterinary Diagnostic Laboratory between 2006 and 2016. For antimicrobials for which breakpoints were available, prevalence of resistance remained below 10% except for tetracycline in S. suis and P. multocida isolates, and these prevalence estimates remained consistently low over the years despite statistical significance (p < .05) in trend analysis. For antimicrobial-bacterial combinations without available breakpoints, the odds of isolates being resistant increased by >10% annually for 7 and 1 antimicrobials in H. parasuis and S. suis isolates respectively, and decreased >10% annually for 4 and 1 antimicrobials in A. suis and H. parasuis isolates, respectively, according to the ordinal regression models. Clinical implications of changes in AMR for A. suis and H. parasuis should be interpreted cautiously due to the lack of interpretive criteria and challenges in antimicrobial susceptibility tests in the case of H. parasuis. Future studies should focus on surveillance of antimicrobial resistance and establishment of standardized susceptibility testing methodologies and interpretive criteria for these animal pathogens of critical importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2019.11.010DOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
12
antimicrobial resistance
8
resistance antimicrobials
8
annually antimicrobials
8
suis parasuis
8
interpretive criteria
8
antimicrobials
6
suis
6
prevalence
5
resistance
5

Similar Publications

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

is a key foodborne pathogen in seafood that poses health risks to consumers. The application of phages and organic acids is considered an alternative strategy for controlling bacterial contamination in foods. In the present study, the genome features of five previously isolated virulent phages (VPpYZU64, VPpYZU68, VPpYZU81, VPpYZU92, and VPpYZU110) were characterized, and their bacteriostatic effects in combination with citric acid were analyzed.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!