Fipronil is an insecticide that is not approved in the European Union in food. In 2017, fipronil was involved in a European health alert due to its presence in fresh hen eggs because of an illicit use in poultry farms, so reliable methods are needed to determine fipronil and its main metabolites in these matrixes. In this work, we report the first approach to the study of fipronil and two metabolites, fipronil-sulfone and fipronil-sulfide by CE. MEKC mode was employed using a solution of 50 mM ammonium perfluorooctanoate pH 9.0 with 10% (v/v) methanol as background electrolyte. The proposed method was combined with a simple sample treatment based on salting-out assisted LLE (SALLE) using acetonitrile as extraction solvent and ammonium sulfate as salt. The SALLE-MEKC-UV method allowed the simultaneous quantification of fipronil and fipronil-sulfone. Validation parameters yielded satisfactory results, with precision, expressed as relative SD, below 14% and recoveries higher than 83%. Limits of detection were 90 µg/kg for fipronil and 150 µg/kg for fipronil-sulfone, so in terms of sensitivity further studies of sample treatments allowing extra preconcentration or the use of more sensitive detection, such as MS, would be needed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201900291DOI Listing

Publication Analysis

Top Keywords

fipronil fipronil-sulfone
8
fipronil
7
approach micellar
4
micellar electrokinetic
4
electrokinetic capillary
4
capillary chromatography
4
chromatography determination
4
determination fipronil
4
fipronil-sulfone
4
fipronil-sulfone eggs
4

Similar Publications

Omics-centric evidences of fipronil biodegradation by Rhodococcus sp. FIP_B3.

Environ Pollut

January 2025

Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India. Electronic address:

The widespread use of the pesticide fipronil in domestic and agriculture sectors has resulted in its accumulation across the environment. Its use to assure food security has inadvertently affected soil microbiome composition, fertility and, ultimately, human health. Degradation of residual fipronil present in the environment using specific microbial species is a promising strategy for its removal.

View Article and Find Full Text PDF

Occurrence and distribution of neonicotinoids and fiproles within groundwater in Minnesota: Effects of lithology, land use and geography.

Sci Total Environ

December 2024

Department of Civil, Environmental, and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, USA. Electronic address:

Due to the widespread use of insecticides in agriculture and for urban pest control, there is the potential for contamination of groundwater systems. Five neonicotinoids, fipronil, and nine transformation products (desnitro-imidacloprid, imidacloprid olefin, imidacloprid urea, acetamiprid-n-desmethyl, thiacloprid amide, 6-chloronicotinic acid, fipronil desulfinyl, fipronil sulfide, and fipronil sulfone) were studied in samples from 15 springs and 75 unique wells from 13 counties over four years (2019-2022) in Minnesota. Up to 13 neonicotinoids and fiproles were identified in groundwater samples from springs and 10 from wells.

View Article and Find Full Text PDF

Phenylpyrazoles are widely used pesticides in the food industry. It is highly desirable to develop efficient pre-treatment and analysis methods to extract and detect phenylpyrazoles in complex food matrices. Herein, the study reports novel squaraine-linked zwitterionic core-shell magnetic covalent organic frameworks (MCOFs),  which are found to be excellent pretreatment materials for the detection of trace phenylpyrazoles in samples.

View Article and Find Full Text PDF

Growing concerns have emerged over the combined effects of multiple stressors on ecosystems. Empirical evidence shows that the sensitivity of aquatic invertebrates to insecticides varies under thermally fluctuating conditions. Additionally, field surveys in estuarine areas of western Japan confirmed the presence of juvenile kuruma prawns (Penaeus japonicus) carrying the white spot syndrome virus (WSSV).

View Article and Find Full Text PDF

Spatiotemporal distribution, risk levels, and transport variations in neonicotinoids and fipronil and its metabolites cross a river-to-sea continuum.

J Hazard Mater

September 2024

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China.

Neonicotinoids (NEOs) and fipronil are widely used in pest control, but their spatiotemporal distribution and risk levels in the "river-estuary-bay" system remain unclear. Between 2018 and 2021, 148 water samples from rivers to inshore and offshore seawater in Laizhou Bay, China were collected to investigate the presence of eight NEOs and fipronil and its metabolites (FIPs). Significant seasonal variations in NEOs were observed under the influence of different cultivation practices and climatic conditions, with higher levels in the summer than in the spring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!