A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of different firing atmospheres on debonding strength of dental porcelain fused to commercially pure titanium. | LitMetric

An in vitro investigation was performed to evaluate the bonding characteristics of porcelain fused to metal (PFM)/commercially pure titanium (cp Ti, grade II) in three firing atmospheres of under vacuum and using two noble gases argon (Ar) and helium (He). Three groups of porcelain veneers firing under vacuum, Ar, and He were prepared to evaluate the bonding of porcelain fused to the cold-rolled cp Ti. The bond strength of PFM durability by a three-point bending test, phases, microhardness of cp Ti after firing processes, and fractures were measured and evaluated. Results show the microhardness of cp Ti in group of porcelain firing under He atmosphere was significantly lower than that of the two other groups, which were in vacuum and Ar (P < .05). X-ray diffraction showed the He group produced in relatively small amounts of TiO and TiO oxides than other groups but featured relatively high quantity of airhole defects in the porcelain body leading to the lowest bond strength. The Ar group presented the highest bond strength of comparing with the groups under vacuum and using He (P < .05). Although the firing processes in He could efficiently prevent the diffusion of oxygen into Ti, the porcelain-cp Ti bond strength using Ar protective atmosphere presented the advantage to achieve clinical requirement because porcelain firing under He revealed prominent voids and defects within the body of porcelain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/kjm2.12157DOI Listing

Publication Analysis

Top Keywords

porcelain fused
12
firing atmospheres
8
pure titanium
8
evaluate bonding
8
firing
5
porcelain
5
atmospheres debonding
4
debonding strength
4
strength dental
4
dental porcelain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!