A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functioning of plant-bacterial associations under osmotic stress in vitro. | LitMetric

The search for effective plant-growth-promoting strains of rhizospheric bacteria that would ensure the resistance of plant-microbial associations to environmental stressors is essential for the design of environmentally friendly agrobiotechnologies. We investigated the interaction of potato (cv. Nevsky) microplants with the plant-growth-promoting bacteria Azospirillum brasilense Sp245 and Ochrobactrum cytisi IPA7.2 under osmotic stress in vitro. The bacteria improved the physiological and biochemical variables of the microplants, significantly increasing shoot length and root number (1.3-fold, on average). Inoculation also led a more effective recovery of the plants after stress. During repair, inoculation contributed to a decreased leaf content of malonic dialdehyde. With A. brasilense Sp245, the decrease was 1.75-fold; with O. cytisi IPA7.2, it was 1.4-fold. During repair, the shoot length, node number, and root number of the inoculated plants were greater than the control values by an average of 1.3-fold with A. brasilense Sp245 and by an average of 1.6-fold with O. cytisi IPA7.2. O. cytisi IPA7.2, previously isolated from the potato rhizosphere, protected the physiological and biochemical processes in the plants under stress and repair better than did A. brasilense Sp245. Specifically, root weight increased fivefold during repair, as compared to the noninoculated plants, while chlorophyll a content remained at the level found in the nonstressed controls. The results indicate that these bacteria can be used as components of biofertilizers. A. brasilense Sp245 has favorable prospects for use in temperate latitudes, whereas O. cytisi IPA7.2 can be successfully used in saline and drought-stressed environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-019-2778-7DOI Listing

Publication Analysis

Top Keywords

brasilense sp245
20
cytisi ipa72
20
osmotic stress
8
stress vitro
8
physiological biochemical
8
shoot length
8
root number
8
plants stress
8
stress repair
8
brasilense
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!