In this study, we describe the formation method of web-like three-dimensional (3-D) titania nanofibrous structures coated on transparent substrate via a high intensity laser induced reverse transfer (HILIRT) process. First, we demonstrate the mechanism of ablation and deposition of Ti on the glass substrates using multiple picosecond laser pulses at ambient air in an explicit analytical form and compare the theoretical results with the experimental results of generated nanofibers. We then examine the performance of the developed glass samples coated by titania nanofibrous structures at varied laser pulse durations by electron microscopy and characterization methods. We follow this by exploring the response of human bone-derived mesenchymal stem cells (BMSCs) with the specimens, using a wide range of in-vitro analyses including MTS assay (colorimetric method for assessing cell metabolic activity), immunocytochemistry, mineralization, ion release examination, gene expression analysis, and protein adsorption and absorption analysis. Our results from the quantitative and qualitative analyses show a significant biocompatibility improvement in the laser treated samples compared to untreated substrates. By decreasing the pulse duration, more titania nanofibers with denser structures can be generated during the HILIRT technique. The findings also suggest that the density of nanostructures and concentration of coated nanofibers play critical roles in the bioreactivity properties of the treated samples, which results in early osteogenic differentiation of BMSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884481PMC
http://dx.doi.org/10.1038/s41598-019-54533-zDOI Listing

Publication Analysis

Top Keywords

titania nanofibrous
8
nanofibrous structures
8
treated samples
8
titania
4
titania nanofiber-like
4
nanofiber-like webs
4
webs induced
4
induced plasma
4
plasma ionization
4
ionization direction
4

Similar Publications

A novel and facile electrospinning-electrospray (EE) method that based on electrospinning technique and simultaneous electrospray was proposed to anchor TiO (P25) nanoparticles on the surface of rice straw-derived cellulose acetate (CA) nanofiber, a series of EE-CA/P25 nanofibrous membranes with different P25 dosage were successfully fabricated, which were characterized in terms of SEM, TEM, FI-IR, XRD, DRS, PL, UV-vis and 3D-EMMs, etc. Results confirmed that P25 nanoparticles were anchored on the surface of CA nanofiber. For different organic dyes of Methylene blue (MB), Rhodamine B (RhB) and Methyl orange (MO), EE-CA/P25 nanofibrous membrane toward MB dye showed the best photocatalytic degradation efficiency of 99.

View Article and Find Full Text PDF

In this study, hierarchical cellulose acetate/polyvinylpyrrolidone hollow microfibers (CA/PVP HMFs) were first prepared via a dip coating method using a steel wire as tubular template and then supported a sol-gel deposition of titania nanoparticles (NPs) to derive CA/PVP@titania NP HMFs. After hydrothermally treated in NaOH solution, CA/PVP@titania NP HMFs were transformed to CA/PVP@titania nanowire (NW) HMFs. SEM observation showed that CA/PVP@titania NW HMFs had a hollow structure with diameters of 450-600 μm and exhibited a hierarchical and nanofibrous structure.

View Article and Find Full Text PDF

Ultralow-resistance and self-sterilization biodegradable nanofibrous membranes for efficient PM removal and machine learning-assisted health management.

J Hazard Mater

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

Article Synopsis
  • Scientists have created special nanofibrous membranes (NFMs) that can clean the air, protect against viruses, and help diagnose respiratory diseases.
  • * They used a smart technique to make these membranes stronger and more effective by mixing different types of materials and adding tiny particles.
  • * The membranes are also good for the environment, as they can break down naturally, and they work well even in humid conditions while also helping to recognize different breathing patterns using advanced technology.
View Article and Find Full Text PDF

In-situ electrospinning PVB/Camellia oil/ZnO-TiO nanofibrous membranes with synergistic antibacterial and degradation of ethylene applied in fruit preservation.

Food Chem

December 2024

Key Laboratory of the Ministry of Bio-based Materials and Energy Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China. Electronic address:

This work utilizes a handheld electrospinning device to prepare a novel nanofibrous composite membrane in situ for packaging freshness. It can realize pick-and-pack and is easy to operate. The nanofibrous membrane is based on PVB as the matrix material, adding Camellia oil (CO) and ZnO-TiO composite nanoparticles (ZT) as the active material.

View Article and Find Full Text PDF

Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by electrospun TiO nanofibres synthesised from two different titanium molecular precursors.

Environ Sci Pollut Res Int

August 2024

Depto. de Física, CINVESTAV-IPN, Av, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.

The evaluation of the photocatalytic properties of electrospun TiO nanofibres (TiO-NFs) synthesised in the same experimental conditions using two distinct precursors, tetraisopropyl orthotitanate (TTIP) and tetrabutyl orthotitanate (TNBT), with morphology and crystalline structure controlled by annealing at 460 °C for 3 h is presented. The presence of circular-shaped TiO-NFs was corroborated by scanning electron microscopy (SEM). By using X-ray photoelectron spectroscopy (XPS), the chemical binding energies and their interactions of the TiO with the different incorporated impurities were determined; the most intense photoelectronic transitions of Ti 2p (458.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!