The dehydrogenative aryl C-H/N-H cross-coupling is a powerful synthetic methodology to install nitrogen functionalities into aromatic compounds. Herein, we report an electrochemical oxidation induced intermolecular cross-coupling between aromatics and sulfonimides with high regioselectivity through N-radical addition pathway under external-oxidant-free and catalyst-free conditions. A wide variety of arenes, heteroarenes, alkenes and sulfonimides are applicable scaffolds in this transformation. In addition, aryl sulfonamides or amines (aniline derivatives) can be obtained through different deprotection process. The cyclic voltammetry mechanistic study indicates that the N-centered imidyl radicals are generated via proton-coupled electron transfer event jointly mediated by tetrabutylammonium acetate and anode oxidation process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884519 | PMC |
http://dx.doi.org/10.1038/s41467-019-13524-4 | DOI Listing |
Small
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFDalton Trans
January 2025
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.
View Article and Find Full Text PDFACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.
View Article and Find Full Text PDFChemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!