The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window. Rather, neonatal colonization by Staphylococcus aureus minimally enriches for antigen-specific Tregs and does not prevent skin inflammation upon later-life exposure. S. aureus α-toxin contributes to this response by stimulating myeloid cell production of IL-1β, which limits S. aureus-specific Tregs. Loss of α-toxin or the IL-1 receptor increases Treg enrichment, whereas topical application of IL-1β or α-toxin diminishes tolerogenic responses to S. epidermidis. Thus, the preferential activation of a key alarmin pathway facilitates early discrimination of microbial "foe" from "friend," thereby preventing tolerance to a common skin pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989301PMC
http://dx.doi.org/10.1016/j.chom.2019.10.007DOI Listing

Publication Analysis

Top Keywords

toxin-triggered interleukin-1
4
interleukin-1 receptor
4
receptor signaling
4
signaling enables
4
enables early-life
4
early-life discrimination
4
discrimination pathogenic
4
pathogenic versus
4
versus commensal
4
skin
4

Similar Publications

The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window.

View Article and Find Full Text PDF

Inflammatory cytokine of IL-1β is involved in T-2 toxin-triggered chondrocyte injury and metabolism imbalance by the activation of Wnt/β-catenin signaling.

Mol Immunol

November 2017

School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an 710061, Shaanxi, China. Electronic address:

Mycotoxin T-2 exerts a causative role in Kashin-Beck disease (KBD) suffering chondrocyte apoptosis and cartilage matrix homeostasis disruption. Recent research corroborated the aberrant levels of pro-inflammatory cytokine IL-1ß in KBD patients and mycotoxin environment. In the present study, we investigated the relevance of IL-1ß in T-2 toxin-evoked chondrocyte cytotoxic injury and aberrant catabolism.

View Article and Find Full Text PDF

Unlabelled: The M1T1 clone of group A Streptococcus (GAS) is associated with severe invasive infections, including necrotizing fasciitis and septicemia. During invasive M1T1 GAS disease, mutations in the covRS regulatory system led to upregulation of an ADP-ribosyltransferase, SpyA. Surprisingly, a GAS ΔspyA mutant was resistant to killing by macrophages and caused higher mortality with impaired bacterial clearance in a mouse intravenous challenge model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!