Chemical composition and selected quality characteristics of new types of precooked wheat and spelt pasta products.

Food Chem

Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland. Electronic address:

Published: March 2020

New types of precooked pasta products have been developed based on refined and wholegrain wheat and spelt flours. The resulting dry pasta was then assessed for chemical composition, including amino acids composition, phenolics content, as well as antioxidant activity. The precooked pasta quality was also evaluated for starch gelatinization degree, physical properties, hardness, color profile of dry and hydrated pasta, and sensory characteristics. We found that the application of the extrusion-cooking technique for wheat and spelt pasta processing allows to achieve instant products with good nutritional characteristics and high degree of gelatinization, as well as attractive quality and sensory profiles. Microstructure showed compact and dense internal structure with visible bran particles if wholegrain flours were used. Wholegrain wheat and wholegrain spelt precooked pasta were characterized by better nutritional composition and greater antioxidant potential, but lower firmness and increased adhesiveness when compared with refined flours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.125673DOI Listing

Publication Analysis

Top Keywords

wheat spelt
12
precooked pasta
12
chemical composition
8
types precooked
8
spelt pasta
8
pasta products
8
wholegrain wheat
8
pasta
7
composition selected
4
selected quality
4

Similar Publications

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

Wheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.

View Article and Find Full Text PDF

This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.

View Article and Find Full Text PDF

This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!