Diverse school community engagement with the North Carolina active routes to school project: a diffusion study.

Int J Behav Nutr Phys Act

Division of Bicycle and Pedestrian Transportation, North Carolina Department of Transportation, Raleigh, NC, USA.

Published: November 2019

Background: Schools located in rural parts of the United States and North Carolina have benefited proportionally less from the federal Safe Routes to School (SRTS) program than their more urban counterparts. We investigated whether and how diverse elementary and middle school communities throughout North Carolina have engaged in a SRTS-inspired, multi-sectoral initiative called the Active Routes to School (ARTS) project over the course of 5 years (2013 through 2017).

Methods: Analyses included a study sample of 2602 elementary and middle schools in North Carolina, 853 that participated in the ARTS project over the five-year study period and 1749 that had not. Statistical models controlling for county- and school-level confounders predicted schools' involvement in walking and bicycling-promotive events, programs, and policies over time.

Results: Schools' engagement with ARTS Project programming increased significantly over the study period, with 33% of eligible schools participating with the project by the end of 2017. Participation was most common in promotional events. Such event participation predicted engagement with regularly recurring programming and school- and district-level establishment of biking- and walking-facilitative policies. Lower income schools were more likely to establish recurring bike and walk programs than wealthier schools, whereas rural schools were less likely than city schools to participate in promotional events, yet equally as likely as other schools to participate in recurring bike and walk programs.

Conclusions: Schools' engagement with the North Carolina ARTS Project diffused despite many schools' rural geographies and lower socioeconomic status. Further, participation in one-time promotional events can portend schools' establishment of recurring walking and biking programs and supportive policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884761PMC
http://dx.doi.org/10.1186/s12966-019-0889-zDOI Listing

Publication Analysis

Top Keywords

north carolina
20
arts project
16
routes school
12
promotional events
12
engagement north
8
active routes
8
schools
8
elementary middle
8
study period
8
schools' engagement
8

Similar Publications

The Bartonella genus of bacteria encompasses ubiquitous species, some of which are pathogenic in humans and animals. Bartonella henselae, the causative agent of Cat Scratch disease, is responsible for a large portion of human Bartonella infections. These bacteria can grow outside of cells, replicate in erythrocytes and invade endothelial and monocytic cells.

View Article and Find Full Text PDF

γ-Glutamyl carboxylase (GGCX) is the sole identified enzyme that uses vitamin K (VK) as a cofactor in humans. This protein catalyses the oxidation of VK hydroquinone to convert specific glutamate residues to γ-carboxyglutamate residues in VK-dependent proteins (VDPs), which are involved in various essential biological processes and diseases. However, the working mechanism of GGCX remains unclear.

View Article and Find Full Text PDF

Copper-dependent halogenase catalyses unactivated C-H bond functionalization.

Nature

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!