Model systems constituted by proteins and unsaturated lipid vesicles were used to gain more insight into the effects of the propagation of an initial radical damage on protein to the lipid compartment. The latter is based on liposome technology and allows measuring the unsaturated fatty acid content as a result of free radical stress on proteins. Two kinds of sulfur-containing proteins were chosen to connect their chemical reactivity with membrane lipid transformation, serum albumins and metallothioneins. Biomimetic systems based on radiation chemistry were used to mimic the protein exposure to different kinds of free radical stress and Raman spectroscopy to shed light on protein structural changes caused by the free radical attack. Among the amino acid residues, Cys is one of the most sensitive residues towards the attack of free radicals, thus suggesting that metal-Cys clusters are good interceptors of reactive species in metallothioneins, together with disulfides moieties in serum albumins. Met is another important site of the attack, in particular under reductive conditions. Tyr and Phe are sensitive to radical stress too, leading to electron transfer reactions or radical-induced modifications of their structures. Finally, modifications in protein folding take place depending on reactive species attacking the protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6995617PMC
http://dx.doi.org/10.3390/biom9120794DOI Listing

Publication Analysis

Top Keywords

radical stress
16
free radical
12
biomimetic systems
8
raman spectroscopy
8
serum albumins
8
reactive species
8
radical
6
protein
5
structural lesions
4
proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!