Rationale: Quadrupole mass spectrometers equipped with an electron ionization (EI) sources have been widely used in space exploration to investigate the composition of planetary surfaces and atmospheres. However, the complexity of the samples and the minimal calibration for the fragmentation of molecules in the ionization chambers have prevented the deconvolution of the majority of the mass spectra obtained at different targets, thus limiting the determination of the exact composition of the samples analyzed. We propose a Monte-Carlo approach to solve this issue mathematically.
Methods: We decomposed simulated mass spectra of mixtures acquired with unit resolving power mass spectrometers and EI sources into the sum of the single components fragmentation patterns weighted by their relative concentration using interior-point least-square fitting. To fit compounds with poorly known fragmentation patterns, we used a Monte-Carlo method to vary the intensity of individual fragment ions. We then decomposed the spectrum thousands of times to obtain a statistical distribution.
Results: By performing the deconvolution on a mixture of seven different molecules with interfering fragmentation patterns (H O, O , CH , Ar, N , C H , and C H ) we show that this approach retrieves the mixing ratio of the individual components more accurately than regular mass spectra decomposition methods that rely on fragmentation patterns from general databases. It also provides the probability density function for each species's mixing ratio.
Conclusions: By removing the solution degeneracy in the decomposition of mass spectra, the method described herein could significantly increase the scientific retrieval from archived space flight mass spectrometry data, where calibration of the ionization source is no longer an option.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.8684 | DOI Listing |
Nat Protoc
January 2025
Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).
View Article and Find Full Text PDFTalanta
January 2025
Institute of Chemistry of Renewable Resources, Department of Chemistry, BOKU University, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria. Electronic address:
Chromatographic separations in combination with spectroscopic detectors are a main pillar of today's analytical chemistry. The recorded spectroscopic data is usually not shown in a typical chromatogram, therefore the contained additional information cannot be accessed readily by the analyst and is inspected in tedious additional routines, such as separate database searches. We developed a method to add colors to gas chromatograms with mass spectral detection.
View Article and Find Full Text PDFCommun Chem
January 2025
The Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
The discovery of fullerene following the synthesis of graphene marked a paradigm shift in chemistry. Here, we report the discovery of biycycloborane, arising from the synthesis of borophane (hydrogen boride). Uniquely, this synthesis method involves a decomposition mechanism rather than traditional atom-by-atom assembly, marking an unique approach to constructing complex borane structures.
View Article and Find Full Text PDFParasit Vectors
January 2025
Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Thailand.
Background: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is proposed for mosquito species identification. The absence of public repositories sharing mass spectra and open-source data analysis pipelines for fingerprint matching to mosquito species limits the widespread use of this technology. The objective of this study was to develop a free open-source data analysis pipeline for Anopheles species identification with MALDI-TOF MS.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Faculty of Pharmacy, The National University of Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
Introduction: Poly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!