A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbiological evidences for gastric cardiac microflora dysbiosis inducing the progression of inflammation. | LitMetric

Background And Aim: Nowadays, anti-inflammation treatment is a promising approach for preventing tumorigenesis, and human microflora is closely related to inflammation. This study aimed to investigate the gastric cardiac microbiome and identify inflammation-related microorganisms for gastric cardiac inflammation.

Methods: We performed 16S rRNA sequencing on a total of 11 healthy individuals and 89 individuals with different degree of gastric cardiac inflammation. Immunohistochemistry was used for verifying candidate bacteria. Phylogenetic reconstruction of unobserved states (picrust) was used for predicting the pathways involved by cardiac microflora.

Results: The resident phyla in normal were Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria, and the dominant genus in normal were Halomonas, shewanella, and Comamonas. In the progression of gastric cardiac inflammation, the diversity of cardiac microflora did not change (P > 0.05). However, the composition structure of cardiac microflora varied between healthy and inflamed tissues (P < 0.05). Meanwhile, there were 64 species parallel increased with inflammation degree, especially Helicobacter pylori, Lactobacillus spp. Additionally, inflammation-related species were detected (P < 0.05), including H. pylori, Acinetobacter ursingii, and Streptococcus agalactiae. Higher H. pylori colonization was positively related to the progression of cardiac inflammation (γ coefficient = 0.678, P < 0.001), and it also influenced the cardiac microbial community structure. Cardiac microflora also participated in DNA repair pathways and is affected by the relative abundance of H. pylori (P < 0.0001).

Conclusions: Cardiac microflora dysbiosis, especially the increasing of the relevant abundance of H. pylori, promotes the progression of cardiac inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jgh.14946DOI Listing

Publication Analysis

Top Keywords

gastric cardiac
20
cardiac microflora
12
cardiac
8
cardiac inflammation
8
gastric
5
microbiological evidences
4
evidences gastric
4
microflora
4
microflora dysbiosis
4
dysbiosis inducing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!