A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ischemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering. | LitMetric

Automated estimation of ischemic stroke evolution across different brain anatomical regions has immense potential to revolutionize stroke treatment. Multi-sequence Magnetic Resonance Imaging (MRI) techniques provide information to characterize abnormal tissues based on their anatomy and physical properties. Asymmetry of the right and left hemispheres of the brain is an important cue for abnormality estimation but using it alone is susceptible to occasional error due to self-asymmetry of the brain. A precise estimate of the symmetry axis is therefore essential for accurate asymmetry identification, which holds the key to the proposed method. The proposed symmetry determined superpixel based hierarchical clustering (SSHC) method initially estimates the lesion from inter-hemispheric asymmetry. This asymmetry further determines the thresholding parameter for hierarchically clustering the superpixels leading to an automated and accurate lesion delineation. A multi-sequence MRI based pipeline also combines the estimations from individual sequences. SSHC is evaluated on different sequences of the Loma Linda University (LLU) dataset with 26 patients and the Ischemic Stroke Lesion Segmentation (ISLES'15) dataset with 28 patients. SSHC eliminates the need for manual determination of threshold for combining the superpixel clusters and is more reliable as it derives the information from the quick estimation of asymmetry. SSHC outperforms the state-of-the-art resulting in a high Dice similarity score of 0.704±0.27 and a recall of 0.85±0.01 which are 6% and 35% respectively higher than the challenge winning method. SSHC thus demonstrates a promising potential in the automated detection of (sub-)acute adult ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2019.103536DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
16
multi-sequence mri
8
symmetry determined
8
determined superpixel
8
superpixel based
8
based hierarchical
8
hierarchical clustering
8
dataset patients
8
asymmetry
5
sshc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!