Background And Aims: Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, improves glucose uptake by epicardial adipose tissue (EAT). However, its metabolism might raise the lactate production and acidosis under hypoxia conditions, i.e. coronary artery disease (CAD), or lipogenesis and, in consequence, expand adipose tissue. Since lactate secreted by adipose tissue is correlated with tissue stress and inflammation, our aim was to study glucose metabolism by epicardial fat in CAD and its regulation by dapagliflozin.

Methods: Paired EAT and subcutaneous adipose tissue (SAT) biopsies from 49 patients who underwent open-heart surgery were cultured and split into three equal pieces, some treated with and others without dapagliflozin at 10 or 100 μM for 6 h. Anaerobic glucose metabolites were measured in supernatants of fat pads, and acidosis on adipogenesis-induced primary culture cells was analysed by colorimetric or fluorescence assays. Gene expression levels were assessed by real-time polymerase chain reaction.

Results: Our results showed that dapagliflozin reduced the released lactate and acidosis in epicardial fat (p < 0.05) without changes in lipid storage-involved genes. In addition, this drug induced gene expression levels of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a mitochondrial biogenesis-involved gene in both EAT and SAT (p < 0.05). After splitting the population regarding the presence of CAD, we observed higher lactate production in EAT from these patients (2.46 [1.75-3.47] mM), which was reduced after treatment with dapagliflozin 100 μM (1.99 [1.08-2.99] mM, p < 0.01).

Conclusions: Dapagliflozin improved glucose metabolism without lipogenesis-involved gene regulation or lactate production, mainly in patients with CAD. These results suggest an improvement of glucose oxidation metabolism that can contribute to cardiovascular benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.016DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
epicardial fat
12
lactate production
12
released lactate
8
coronary artery
8
artery disease
8
glucose metabolism
8
dapagliflozin 100 μm
8
gene expression
8
expression levels
8

Similar Publications

Obesity causes an imbalance in the expression and secretion of several organokines, which in turn contributes to the development of metabolic disorders such as type 2 diabetes mellitus. Organokines are produced by corresponding organs and affect systemic metabolic homeostasis. Diverse organokines play a crucial role in the communication between adipose tissue, skeletal muscle and other organs.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!