Extracellular vesicles (EVs) are nowadays known to be mediators of cell-to-cell communication involved in physiological and pathological processes. The current expectation is their use as specific biomarkers and therapeutic tools due to their inner characteristics. However, several investigations still need to be done before we can use them in the clinic. First, their categorization is still under debate, although an accurate classification of EVs subtypes should be based on physical characteristics, biochemical composition or condition description of the cell of origin. Second, EVs carry lipids, proteins and nucleic acids that can induce epigenetic modifications on target cells. These cargos, as well as EVs biogenesis, shedding and uptake is both ageing and redox sensitive. More specifically, senescence and oxidative stress increase EVs release, and their altered content can trigger antioxidant but also prooxidant responses in target cells thereby modulating the redox status. Further analysis would help to asses EVs role in the development and progression of oxidative stress-related pathologies. In this review we aimed to summarize the current knowledge on EVs and their involvement in redox modulation on age-related pathologies. We also discuss future directions and prospective that could be performed to improve EVs usage as biomarkers or therapeutic tools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.032DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
redox modulation
8
evs
8
biomarkers therapeutic
8
therapeutic tools
8
target cells
8
redox
4
vesicles redox
4
modulation aging
4
aging extracellular
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

Characterisation of Castration-Resistant Cell-Derived Exosomes and Their Effect on the Metastatic Phenotype.

Cancers (Basel)

January 2025

Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.

Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!