Background Naturally ripened fruits play a vital role in human nutrition. Under certain conditions, synthetic chemicals like calcium carbide (CaC2) and ethylene glycol (EG) are being freely used illegally in India and other countries for fruit ripening without serious concern on its toxic effects. This preclinical study evaluated the toxicity on different organs after the exposure of industrial-grade CaC2 and EG to the rats. Methods Acute toxicity was induced by the oral administration of a single dose of chemicals to the rats, and their morbidity and mortality were monitored. For subacute study, different organs of animals were analyzed biochemically and histologically after the exposure of low doses of chemicals for 30 days. Results At an acute dose of 5 mg/kg body weight of CaC2, 85% of the animals were found dead within 14 days; however, no mortality was observed following EG administration. At subacute doses, RBC and hemoglobin levels were found to be declined (p < 0.01), whereas total WBC and platelet counts, especially lymphocytes, were elevated remarkably (p < 0.01). Total protein, albumin, and urea were also found to be increased (p < 0.01). Histopathological observations support the toxicity in rats at higher doses of CaC2 and EG. Conclusions The study revealed that the artificial fruit-ripening agents like CaC2 and EG cause toxic effects on the internal organs of rats. The subsequent inflammatory response might have weakened the immune system. This in turn suggests the requisite for urgent measures to regulate the use of harmful synthetic agents in fruit ripening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jbcpp-2019-0126 | DOI Listing |
Plant Environ Interact
February 2025
Genetics, Biotechnology and Seed Science Unit (GBioS), Laboratory of Crop Production, Physiology and Plant Breeding (PAGEV), Faculty of Agricultural Sciences University of Abomey-Calavi Cotonou Republic of Benin.
Pineapple ( (L.) Merrill) is among the main fruits produced in West Africa. This is also the case for the Republic of Benin, where pineapple fruit is regarded as an important crop for numerous producers in the Southern part of the country.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China.
Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash-slag powder blends (AAFB), and slag powder alone (AABS).
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
2-Methylquinazolin-4(3)-ones were efficiently constructed using solid calcium carbide as an alkyne source, 2-aminobenzamides or 2-aminobenzohydrazides as substrates, and -tolylsulfonyl azide as a mediator through simultaneous formation of two C-N bonds in one step. The salient features of this protocol are the use of an inexpensive, abundant and easy-to-use alkyne source as a substitute for flammable and explosive gaseous acetylene, low-cost catalyst, wide substrate scope, satisfactory yield, and simple manipulation. This method can also be extended to gram scale.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Building Engineering and Construction Management, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
This study investigates the use of various industrial waste materials-silica fume (SF), cement kiln dust (CKD), calcium carbide residue (CCR), rice husk ash (RHA), and ground granulated blast furnace slag (GGBS)-as eco-friendly stabilizers for expansive clay soil (ECS). Laboratory tests were conducted to assess the impact of different proportions (3 %, 6 %, and 9 %) of these additives on the soil's physical, mechanical, and microstructural properties. Results indicated that the inclusion of industrial waste significantly improved the soil's behavior, with notable reductions in liquid limit (up to 37.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, China.
To utilize discarded shield residue and alleviate the shortage of subgrade filling, industrial wastes such as calcium carbide slag (CCS) and fly ash (FA) were considered to enhance the mechanical properties of the shield residue. A series of laboratory tests, including California Bearing Ratio (CBR) tests, unconfined compressive strength (UCS) tests, moisture content tests, pH tests, water stability tests, and dry-wet cycles tests were performed on discarded shield residue with additive contents. The results show that the UCS and CBR values enhanced significantly with the increase in curing time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!