With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5' phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using SO also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non-stress and oxidative stress conditions. However, when germinating on sulfur-deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.14621 | DOI Listing |
Front Plant Sci
January 2025
National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China.
Introduction: Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
The Asian Citrus Psyllid (ACP), Diaphorina citri, severely threatens citrus production worldwide by transmitting the greening (= Huanglongbing)-causing bacterium Candidatus Liberibacter asiaticus. There is growing evidence that the push-pull strategy is suitable to partially mitigate HLB by repelling ACP with transgenic plants engineered to produce repellents and attracting the vector to plants with a minimal disease transmission rate. Species that pull ACP away from commercial citrus plants have been identified, and transgenic plants that repel ACP have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!