Predicting synthetic lethal interactions using heterogeneous data sources.

Bioinformatics

Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore.

Published: April 2020

Motivation: A synthetic lethal (SL) interaction is a relationship between two functional entities where the loss of either one of the entities is viable but the loss of both entities is lethal to the cell. Such pairs can be used as drug targets in targeted anticancer therapies, and so, many methods have been developed to identify potential candidate SL pairs. However, these methods use only a subset of available data from multiple platforms, at genomic, epigenomic and transcriptomic levels; and hence are limited in their ability to learn from complex associations in heterogeneous data sources.

Results: In this article, we develop techniques that can seamlessly integrate multiple heterogeneous data sources to predict SL interactions. Our approach obtains latent representations by collective matrix factorization-based techniques, which in turn are used for prediction through matrix completion. Our experiments, on a variety of biological datasets, illustrate the efficacy and versatility of our approach, that outperforms state-of-the-art methods for predicting SL interactions and can be used with heterogeneous data sources with minimal feature engineering.

Availability And Implementation: Software available at https://github.com/lianyh.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btz893DOI Listing

Publication Analysis

Top Keywords

heterogeneous data
16
data sources
12
synthetic lethal
8
interactions heterogeneous
8
loss entities
8
data
6
predicting synthetic
4
lethal interactions
4
heterogeneous
4
sources motivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!