Interactions between hydatid cyst and regulated cell death may provide new therapeutic opportunities.

Parasite

Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166/15731 Tabriz, Iran - Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, 5166/15731 Tabriz, Iran.

Published: May 2020

Cystic echinococcosis and alveolar echinococcosis are chronic zoonotic infections, transmitted throughout the world. Development of the cestode larval stages in the liver and lungs causes damage to intermediate hosts, including humans. Several pathways leading to the suppression of host immune response and the survival of the cysts in various hosts are known. Immune response modulation and regulated cell death (RCD) play a fundamental role in cyst formation, development and pathogenesis. RCD, referring to apoptosis, necrosis and autophagy, can be triggered either via intrinsic or extrinsic cell stimuli. In this review, we provide a general overview of current knowledge on the process of RCD during echinococcosis. The study of interactions between RCD and Echinococcus spp. metacestodes may provide in-depth understanding of echinococcosis pathogenesis and open new horizons for human intervention and treatment of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884020PMC
http://dx.doi.org/10.1051/parasite/2019070DOI Listing

Publication Analysis

Top Keywords

regulated cell
8
cell death
8
immune response
8
interactions hydatid
4
hydatid cyst
4
cyst regulated
4
death provide
4
provide therapeutic
4
therapeutic opportunities
4
opportunities cystic
4

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!