The plant hormone group, the cytokinins, is implicated in both qualitative and quantitative components of yield. Cytokinins have opposing actions in shoot and root growth-actions shown to involve cytokinin dehydrogenase (CKX), the enzyme that inactivates cytokinin. We revise and provide unambiguous names for the CKX gene family members in wheat, based on the most recently released wheat genome database, IWGSC RefSeq v1.0 & v2.0. We review expression data of CKX gene family members in wheat, revealing tissue-specific gene family member expression as well as sub-genome-specific expression. Manipulation of CKX in cereals shows clear impacts on yield, root growth and orientation, and Zn nutrition, but this also emphasizes the necessity to unlink promotive effects on grain yield from negative effects of cytokinin on root growth and uptake of mineral nutrients, particularly Zn and Fe. Wheat is the most widely grown cereal crop globally, yet is under-research compared with rice and maize. We highlight gaps in our knowledge of the involvement of CKX for wheat. We also highlight the necessity for accurate analysis of endogenous cytokinins, acknowledging why this is challenging, and provide examples where inadequate analyses of endogenous cytokinins have led to unjustified conclusions. We acknowledge that the allohexaploid nature of bread wheat poses challenges in terms of uncovering useful mutations. However, we predict TILLING followed by whole-exome sequencing will uncover informative mutations and we indicate the potential for stacking mutations within the three genomes to modify yield components. We model a wheat ideotype based on CKX manipulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004901 | PMC |
http://dx.doi.org/10.1111/pbi.13305 | DOI Listing |
Ann Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.
Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.
Chembiochem
January 2025
Ludwig-Maximilians-Universitat Munchen, Chemistry, Butenandstr. 5-13, 81377, Muenchen, GERMANY.
In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23nt provide challenges for their investigation.
View Article and Find Full Text PDFGigaByte
December 2024
Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 904-0495, Onna-son, Okinawa, Japan.
The number of high-quality genomes is rapidly increasing across taxa. However, it remains limited for coral reef fish of the Pomacentrid family, with most research focused on anemonefish. Here, we present the first assembly for a Pomacentrid of the genus .
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan.
A 37-year-old man presented with symptoms of polyuria and weight loss over the past year. Initial laboratory examination showed elevated blood glucose level (468 mg/dL [25.9 mmol/L]; normal reference range [RR], 75-109 mg/dL [4.
View Article and Find Full Text PDFGenes Dis
March 2025
Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Family with sequence similarity 20 C (FAM20C) is a Golgi protein kinase that phosphorylates the serine residue in the S-x-E/pS motif of target proteins. FAM20C phosphorylates most secreted proteins, which play important roles in multiple biological processes, including cancer progression, biomineralization, and lipid homeostasis. Numerous studies have documented the potential contribution of FAM20C to the growth, invasion, and metastasis of glioma, breast cancer, and other cancers, as well as to the mineralization process of teeth and bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!