Ultrahigh-Sensitivity Sandwiched Plasmon Ruler for Label-Free Clinical Diagnosis.

Adv Mater

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China.

Published: January 2020

Optical biosensors, especially those based on plasmonic structures, have emerged recently as a potential tool for disease diagnostics. Plasmonic biosensors have demonstrated impressive benefits for the label-free detection of trace biomarkers in human serum. However, widespread applications of these technologies are hindered because of their insufficient sensitivity, their relatively complex chemical immobilization processes, and the use of prism couplers. Accordingly, a sandwiched plasmon ruler (SW-PR) based on a Au nanohole array with ultrahigh sensitivity arising from the plasmonic coupling effect is developed. Highly confined surface charges caused by Bloch wave surface plasmon polarizations substantially increase the coupling efficiency. This platform exhibits thickness sensitivity as high as 61 nm nm and can detect at least 200 000-fold lower analyte concentrations than a nanowell sensing platform with the same wavelength shift. Additionally, the sandwiched plasmonic biosensor allows precise and label-free testing of clinical biomarkers, namely C-reactive protein and procalcitonin, in patient serum samples without requiring a sophisticated prism coupler, extra antibodies, or a chemical immobilization technique. This study yields new insight into the structural design of plasmon rulers and will open exciting avenues for disease diagnosis and therapy follow-up at the point-of-care.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201905927DOI Listing

Publication Analysis

Top Keywords

sandwiched plasmon
8
plasmon ruler
8
chemical immobilization
8
ultrahigh-sensitivity sandwiched
4
plasmon
4
ruler label-free
4
label-free clinical
4
clinical diagnosis
4
diagnosis optical
4
optical biosensors
4

Similar Publications

Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.

View Article and Find Full Text PDF

A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus.

Anal Chim Acta

February 2025

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:

Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!