A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996502PMC
http://dx.doi.org/10.15252/embj.2019102729DOI Listing

Publication Analysis

Top Keywords

thermal stress
16
intron retention
12
stress exposure
12
nuclear stress
8
stress bodies
8
satellite iii
8
hsatiii lncrnas
8
stress recovery
8
splicing factors
8
stress
7

Similar Publications

Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Intermittent Thermal Convection in Jammed Emulsions.

Phys Rev Lett

December 2024

Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

We study the process of thermal convection in jammed emulsions with a yield-stress rheology. We find that heat transfer occurs via an intermittent mechanism, whereby intense short-lived convective "heat bursts" are spaced out by long-lasting conductive periods. This behavior is the result of a sequence of fluidization-rigidity transitions, rooted in a nontrivial interplay between emulsion yield-stress rheology and plastic activity, which we characterize via a statistical analysis of the dynamics at the droplet scale.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!