An ultrasensitive label-free photoelectrochemical (PEC) immunosensor was developed to detect amyloid β-protein (Aβ) based on CdS/CdTe-cosensitized SnO2 nanoflowers. Specifically, SnO2 with a flower-like porous nanostructure was utilized as a perfect substrate for the construction of PEC immunosensors, and the SnO2-modified electrode was first coated with CdTe quantum dots (QDs) and then further deposited with CdS by successive ionic layer adsorption and reaction techniques. The formed SnO2/CdS/CdTe-cosensitized structure exhibited excellent photocurrent intensity and was employed as an excellent photoactive matrix to immobilize Aβ antibody to further construct the immunosensor. Under optimal conditions, the as-constructed PEC immunosensor was used to detect Aβ and exhibited a wide linear concentration range from 0.5 pg mL-1 to 10 ng mL-1, with a low limit of detection (LOD, 0.18 pg mL-1, S/N = 3). Meanwhile, it also presented good reproducibility, specificity, and stability and may open a new promising platform for the clinical detection of Aβ or other biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an01848d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!