The treatment of glioblastoma has been a big challenge for decades in the oncological field mainly owing to its unique biological characteristics, such as high heterogeneity, diffusing invasiveness, and capacity to resist conventional therapies. The mRNA-based therapeutic modality holds many superior features, including easy manipulation, rapid and transient expression, and adaptive convertibility without mutagenesis, which are suitable for dealing with glioblastoma's complexity and variability. Synthetic anticancer mRNAs carried by various vehicles act as the ultimate attackers of the tumor across biological barriers. In this modality, specifically targeted glioblastoma treatment can be guaranteed by adding targeting molecules at certain levels. The choice of mRNA-bearing vehicle and administration method is a fully patient-tailored selection. This review covers the advantages and possible limitations of mRNA-based gene therapy, the synthesis of mRNA, the feasible methods for synthetic mRNA delivery and clinical therapeutic prospects of mRNA-based gene therapy for glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857656PMC
http://dx.doi.org/10.3389/fonc.2019.01208DOI Listing

Publication Analysis

Top Keywords

mrna-based gene
12
gene therapy
12
therapeutic prospects
8
prospects mrna-based
8
therapy glioblastoma
8
glioblastoma treatment
8
mrna-based
4
glioblastoma
4
treatment glioblastoma
4
glioblastoma big
4

Similar Publications

Optimizing mRNA translation efficiency through rational 5'UTR and 3'UTR combinatorial design.

Gene

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA. Electronic address:

Advances in molecular medicine and biotechnology have demonstrated messenger RNA (mRNA)-based therapies to be a promising therapeutic modality for infectious diseases, genetic disorders, and cancers. However, key challenges persist, including low translation efficiency and short half-life of exogenous mRNA. The untranslated regions (UTRs) influence important parameters like mRNA stability and translation efficiency.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.

View Article and Find Full Text PDF

One-pot ligation of multiple mRNA fragments on dsDNA splint advancing regional modification and translation.

Nucleic Acids Res

January 2025

Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China.

Region-specific RNA modifications are crucial for advancing RNA research and therapeutics, including messenger RNA (mRNA)-based vaccines and immunotherapy. However, the predominant method, synthesizing regionally modified mRNAs with short single-stranded DNA (ssDNA) splints, encounters challenges in ligating long mRNA fragments due to the formation of RNA self-folded complex structures. To address this issue, we developed an efficient strategy using an easily obtained long double-stranded DNA (dsDNA) as a ligation splint after in situ denaturing, while parts of this dsDNA are the templates for transcribing mRNA fragments.

View Article and Find Full Text PDF

As RNA rises as one of the most significant modalities for clinical applications and life science research, efficient tools for delivering and integrating RNA molecules into biological systems become essential. Herein, we report a formulation using a polycharged biodegradable nano-carrier, N1-501, which demonstrates superior efficiency and versatility in mRNA encapsulation and delivery in both cell and animal models. N1-501 is a polymeric material designed to function through a facile one-step formulation process suitable for various research settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!