Objective: To observe whether metformin (MET) plays a protective role in acute lung injury (ALI) induced by paraquat (PQ) poisoning in rats by activating the AMPK/NF-B signaling pathway.

Methods: PQ exposure was used to construct a rat model of ALI and a model of acute type II alveolar epithelial cell (RLE-6TN) injury, and MET intervention was performed. Rat lung tissue samples were collected to evaluate pathological changes in rat lung tissue, the oxidation index, and inflammatory factors; cell viability was detected by CCK-8 assays, and the protein expression levels of phospho-AMPK and phospho-NF-Bp65 in rat lung tissue and RLE-6TN cells were observed by Western blotting.

Results: Compared with the PQ group, the MET treatment group showed significantly (1) reduced lung wet/dry ratio (W/D: 4.67 ± 0.31 vs. 5.45 ± 0.40, < 0.001), (2) reduced pathological changes in lung tissue, (3) decreased MDA levels (nmol/mg prot: 2.70 ± 0.19 vs. 3.08 ± 0.15, < 0.001) and increased SOD and GSH-Px activities (U/mg prot: 76.17 ± 5.22 vs. 45.23 ± 6.58, 30.40 ± 2.84 vs. 21.00 ± 3.20; all < 0.001) in lung tissue homogenate, (4) reduced levels of IL-1, IL-6, and TNF- in lung tissue homogenates (pg/mL: 47.87 ± 5.06 vs. 66.77 ± 6.55; 93.03 ± 7.41 vs. 107.39 ± 9.81; 75.73 ± 6.08 vs. 89.12 ± 8.94; all < 0.001), (5) increased activity of RLE-6TN cells (%: 0.69 ± 0.09, 0.76 ± 0.06, and 0.58 ± 0.03 vs. 0.50 ± 0.05; all < 0.05), (6) decreased protein levels of phospho-NF-Bp65 in lung homogenates and RLE-6TN cells (p-NF-B/NF-B: 0.47 ± 0.09 vs. 0.81 ± 0.13; 0.26 ± 0.07 vs. 0.79 ± 0.13; all < 0.01), and (7) upregulated protein expression of phospho-AMPK in lung homogenates and RLE-6TN cells (p-AMPK/AMPK: 0.88 ± 0.05 vs. 0.36 ± 0.12; 0.93 ± 0.03 vs. 0.56 ± 0.15; all < 0.01). After the addition of the AMPK inhibitor Compound C (Com C), the protein expression levels of phospho-AMPK and phospho-NF-Bp65 returned to baseline.

Conclusion: MET can effectively alleviate ALI induced by paraquat poisoning and increase the viability of cells exposed to paraquat. The mechanism may be related to the activation of the AMPK/NF-B pathway, downregulation of inflammatory mediators such as IL-6 and TNF-, and upregulation of the SOD and GSH-Px oxidation index, and these effects can be inhibited by the AMPK inhibitor Com C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875205PMC
http://dx.doi.org/10.1155/2019/1709718DOI Listing

Publication Analysis

Top Keywords

lung tissue
24
rle-6tn cells
16
paraquat poisoning
12
rat lung
12
protein expression
12
lung
11
acute lung
8
lung injury
8
ali induced
8
induced paraquat
8

Similar Publications

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada.

View Article and Find Full Text PDF

Cell-Cultured Influenza Vaccine Enhances IFN-γ+ T Cell and Memory T Cell Responses Following A/Victoria/2570/2019 IVR-215 (A/H1N1) Infection.

Vaccines (Basel)

December 2024

The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

Background: Influenza remains a significant public health challenge, with vaccination being a substantial way to prevent it. Cell-cultured influenza vaccines have emerged to improve on the drawbacks of egg-based vaccines, but there are few studies focusing on T cell immunity with both types of vaccines. Therefore, we studied the following 2022-2023 seasonal influenza vaccines with a standard dose and high dose: cell-based (C_sd and C_hd) and egg-based (E_sd and E_hd) vaccines.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (T) cells and tissue-resident memory B (B) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!