Micropeptides (≤100 amino acids) are essential regulators of physiological and pathological processes, which can be encoded by small open reading frames (smORFs) derived from long non-coding RNAs (lncRNAs). Recently, lncRNA-encoded micropeptides have been shown to have essential roles in tumorigenesis. Since translated smORF identification remains technically challenging, little is known of their pathological functions in cancer. Therefore, we created classifiers to identify translated smORFs derived from lncRNAs based on ribosome-protected fragment sequencing and machine learning methods. In total, 537 putative translated smORFs were identified and the coding potential of five smORFs was experimentally validated green fluorescent protein-tagged protein generation and mass spectrometry. After analyzing 11 lncRNA expression profiles of seven cancer types, we identified one validated translated lncRNA, ZFAS1, which was significantly up-regulated in hepatocellular carcinoma (HCC). Functional studies revealed that ZFAS1 can promote cancer cell migration by elevating intracellular reactive oxygen species production by inhibiting nicotinamide adenine dinucleotide dehydrogenase expression, indicating that translated ZFAS1 may be an essential oncogene in the progression of HCC. In this study, we systematically identified translated smORFs derived from lncRNAs and explored their potential pathological functions in cancer to improve our comprehensive understanding of the building blocks of living systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861293 | PMC |
http://dx.doi.org/10.3389/fgene.2019.01111 | DOI Listing |
Nat Commun
August 2024
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
Small open reading frames (smORFs) shorter than 100 codons are widespread and perform essential roles in microorganisms, where they encode proteins active in several cell functions, including signal pathways, stress response, and antibacterial activities. However, the ecology, distribution and role of small proteins in the global microbiome remain unknown. Here, we construct a global microbial smORFs catalog (GMSC) derived from 63,410 publicly available metagenomes across 75 distinct habitats and 87,920 high-quality isolate genomes.
View Article and Find Full Text PDFJ Biomol Struct Dyn
April 2024
School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, India.
tRNA-Encoded Peptides (tREPs), encoded by small open reading frames (smORFs) within tRNA genes, have recently emerged as a new class of functional peptides exhibiting antiparasitic activity. The discovery of tREPs has led to a re-evaluation of the role of tRNAs in biology and has expanded our understanding of the genetic code. This presents an immense, unexplored potential in the realm of tRNA-peptide interactions, paving the way for groundbreaking discoveries and innovative applications in various biological functions.
View Article and Find Full Text PDFMethods Mol Biol
April 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.
Here, we report our approach to peptidomic analysis of the plant model Physcomitrium patens. Intracellular and extracellular peptides were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns to isolate intracellular peptides and on reversed-phase cartridges to isolate extracellular peptides, with the isolated peptides subjected to LC-MS/MS analysis.
View Article and Find Full Text PDFProteomics
June 2024
Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules.
View Article and Find Full Text PDFJ Biomol Struct Dyn
August 2024
Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.
The pervasive repertoire of plant molecules with the potential to serve as a substitute for conventional antibiotics has led to obtaining better insights into plant-derived antimicrobial peptides (AMPs). The massive distribution of Small Open Reading Frames (smORFs) throughout eukaryotic genomes with proven extensive biological functions reflects their practicality as antimicrobials. Here, we have developed a pipeline named smAMPsTK to unveil the underlying hidden smORFs encoding AMPs for plant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!