Membrane proteins that are imported into chloroplasts must be accurately targeted in order to maintain the identity and function of the highly differentiated internal membranes. Relatively little is known about the targeting information or pathways that direct proteins with transmembrane domains to either the inner envelope or thylakoids. In this study, we focused on a structurally simple class of membrane proteins, the tail-anchored proteins, which have stroma-exposed amino-terminal domains and a single transmembrane domain within 30 amino acids of the carboxy-terminus. SECE1 and SECE2 are essential tail-anchored proteins that function as components of the dual SEC translocases in chloroplasts. SECE1 localizes to the thylakoids, while SECE2 localizes to the inner envelope. We have used transient expression in Arabidopsis leaf protoplasts and confocal microscopy in combination with a domain-swapping strategy to identify regions that contain important targeting determinants. We show that membrane-specific targeting depends on features of the transmembrane domains and the short C-terminal tails. We probed the contributions of these regions to targeting processes further through site-directed mutagenesis. We show that thylakoid targeting still occurs when changes are made to the tail of SECE1, but changing residues in the tail of SECE2 abolishes inner envelope targeting. Finally, we discuss possible parallels between sorting of tail-anchored proteins in the stroma and in the cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857650PMC
http://dx.doi.org/10.3389/fpls.2019.01401DOI Listing

Publication Analysis

Top Keywords

tail-anchored proteins
16
inner envelope
12
membrane-specific targeting
8
sece1 sece2
8
membrane proteins
8
transmembrane domains
8
regions targeting
8
proteins
7
targeting
6
tail-anchored
4

Similar Publications

GET3 is an ATPase protein that plays a pivotal role in the guided entry of the tail-anchored (GET) pathway. The protein facilitates the targeting and inserting of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) by interacting with a receptor protein complex on the ER. The role of GET3 in various biological processes has been established in yeast, plants, and mammals but not in filamentous fungi.

View Article and Find Full Text PDF

Analysis of protein trafficking between mitochondria and the endoplasmic reticulum by fluorescence microscopy.

Methods Enzymol

November 2024

Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan. Electronic address:

Precise protein localization is essential for normal cellular functions. However, recent studies have revealed that protein targeting is error-prone, and tail-anchored proteins mistargeted to mitochondria are transferred to the endoplasmic reticulum (ER) by an ATPase Msp1 (yeast)/ATAD1 (human) in the mitochondrial outer membrane for further quality examination in the ER to determine their fate, degradation or re-targeting. Analysis of the inter-organelle transfer of proteins requires a combination of time-lapse fluorescence microscopy and a system to achieve regulation of the protein levels of both transfer substrates and factors regulating the transfer in a coordinated manner at precise timing.

View Article and Find Full Text PDF

Membrane Interactions of GET1 and GET2 Facilitate Fiber Cell Initiation through the Guided Entry of the TA Protein Pathway in Cotton.

J Agric Food Chem

November 2024

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.

The guided entry of TA proteins (GET) pathway, which is responsible for the post-translational targeting and insertion of the tail-anchored (TA) protein into the endoplasmic reticulum (ER), plays an important role in physiological processes such as protein sorting, vesicle trafficking, cell apoptosis, and enzymatic reactions in which the GET1/2 complex is indispensable. However, a comprehensive study of the and genes and the GET pathway in cotton has not yet been carried out. Here, 12 and 21 genes were identified in nine representative plant species, and the phylogenetic relationships, gene structures, protein motifs, cis-regulatory elements (CREs), and temporal and spatial expression profiles were analyzed thoroughly.

View Article and Find Full Text PDF

Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins.

Structure

December 2024

Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany. Electronic address:

Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E.

View Article and Find Full Text PDF
Article Synopsis
  • In cell division and muscle growth, the nucleus and centrosomes need to work together properly.
  • Scientists found that a protein called SLMAP3 helps place nuclei correctly during muscle development, and without it, muscles don’t form properly in mice.
  • SLMAP3 is important for organizing the cell parts and making sure muscle cells grow and develop in the right way.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!